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Preface

About this Study Manual

This study manual has been specifically written for students preparing for the IFoA and IAI
Exam CS1. The CS1 exam syllabus spans topics in basic probability (random variables), classical
statistical inference, linear regression and generalised linear models, Bayesian credibility and
data analysis. The study manual will help you prepare for each and every one of these topics.
We developed the text by carefully studying the syllabus objectives, past exam questions and
solutions, and the IFoA CS1 Core Reading. Based on our study of these materials, we have
written a comprehensive text that will offer a solid theoretical and conceptual foundation for
your exam days. Included in this text are illustrative examples and end-of-section exercises that
will develop your calculation skills and deepen your understanding. We have included the R
code where its inclusion will directly prepare you for your exam. The five appendices can help
fill in gaps in your background knowledge and point you in the direction of additional learning
resources.

The first author, Yiping Guo, extends his gratitude to Gabriel Necoechea, the second author,
for his meticulous proofreading of the chapters on statistical inference and Bayesian statistics,
which significantly enhanced their clarity and quality. It is a truly pleasure and enjoyment
working with him.

The second author, Gabriel Necoechea, would like to thank Matthew Naeger, Anna Melikyan,
Albert Ofoe, and Clement Moki for reading an early draft of chapters on probability & regression
and offering helpful suggestions. Very special thanks go to Yiping Guo, coauthor, for setting a
high standard for quality, which you will see in his chapters of this study manual. Reading his
sections motivated me to revise (and hopefully improve) my sections. His keen proofreading and
helpful comments on my chapters also improved the quality of the text. I thoroughly enjoyed
our collaboration.

We would like to thank Abraham Weishaus for generously allowing us to use some of his original
exercises, which appear in his ASM Study Manual for SOA Exam P. Thanks are also due to
Yijia Liu for his editorial work, which greatly improved the visual appeal of this study manual.
We sincerely thank Bill Marella and Joana Amorim for their valuable support throughout the
development of this project.

Getting the Most out of this Study Manual

We have written a comprehensive text that covers all aspects of the Exam CS1 syllabus. How-
ever, you should consider your own background when using this manual. Identify weak spots
and focus there. In particular, do a few of the exercises but do not do every single exercise.
Once a particular kind of exercise feels comfortable, move on to the next kind of exercise (e.g.,
move from calculating expectation to calculating variance).

At the same time, do not underestimate the importance of building strong fundamentals! Stu-
dents at the level of Exam CS1 frequently make the mistake to think that, because the exam
is quite challenging, the approach to take is to move very quickly and learn very complicated
things. Instead, you should focus on moving slowly but steadily, building a strong grasp of things
that seem easy so that more complicated things become easy as a consequence of your strong
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fundamentals. Basically, instead of thinking how far you can stretch your mathematical under-
standing, you should try to compress the syllabus by seeing how the fundamental principles
apply over and over and over again. We hope that the written text and illustrative examples
will help you to achieve this.

On a related note, you may find weaknesses in your fundamentals, either in probability theory,
calculus, or even algebra. The published examiners’ reports for IFoA Exam CS1 caution that
many students would be well served by strengthening their calculus, algebra, and basic probabil-
ity skills. Do not underestimate the marks you can earn simply by knowing how to do a calculus
calculation correctly! For this reason, you should hold yourself to a very high standard when
evaluating your performance in examples and exercises. You can forgive yourself for making an
algebra mistake, especially if your strategy/theory is sound, but you must acknowledge that
your attention to detail was not as sharp as it needs to be on exam day! Aim to improve your
accuracy of calculations during the course of your exam preparation.

The R programming component of Exam CS1 is sure to loom large in your mind, possibly
causing you quite a bit of anxiety. Our recommendation is to not overemphasise this aspect
of the exam. The R programming requirements of Exam CS1 are relatively modest. Most of
the challenge with programming comes not from the complexity of programming, but rather
from the time constraints under which that programming must be completed. We believe that
your best strategy for defeating this time challenge is not to devote hours and hours of R
programming practice, but to get better at identifying the theoretically sound strategy for
setting up the problem. For example, many of the programming tasks on Exam CS1 will fall
into one of the following four categories:

• perform data visualisation

• conduct hypothesis testing

• fit a (generalised) linear model

• simulate values from a random variable

The programming required to carry out any of these tasks is modest. What is more important is
that you make reasonable assumptions and, with the output in hand, make thoughtful comments
on that output. Therefore, while we do discuss exam-relevant R skills in the study manual, our
philosophy in developing this study manual has been to prioritise the theoretical content that
we think will set you up to receive high marks on the exam. We have included an appendix with
a link to the R Formula and Review Sheet by ACTEX Learning. That PDF contains everything
we think you need to know to succeed in the R programming tasks of Exam CS1. At the time
of writing, the first 21 pages of that PDF are relevant to Exam CS1.

Yiping Guo, Ph.D., ASA and Gabriel Necoechea, Ph.D.

March, 2025
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Chapter 2

Statistical Inference

2.1 Sampling Theory Related to the Normal Distributions

When the data are i.i.d. normal:

X1, · · · , Xn
iid∼ N (µ, σ2),

we can derive the exact (not asymptotic) sampling distributions of many quantities of interest.
Specifically, we will study chi-square distributions, t-distributions and F -distributions in greater
depth, and discuss how those distributions are related to the normal distributions. The results
discussed in this part will be extensively used when we study confidence intervals and hypothesis
testing in later chapters.

2.1.1 Distributions of the Sample Mean X̄

Under the normal assumption, we can show that the sample mean X̄ also follows a normal
distribution.

Theorem 2.1.1. If X1, · · · , Xn
iid∼ N (µ, σ2), then X̄ follows a normal distribution:

X̄ ∼ N
(

µ,
σ2

n

)
, (2.1.1)

Proof of Theorem 2.1.1. Recall that if X1 ∼ N (µ1, σ2
1) is independent of X2 ∼ N (µ2, σ2

2), then,

X1 + X2 ∼ N (µ1 + µ2, σ2
1 + σ2

2).

Therefore,

X̄ = 1
n

n∑
i=1

Xi ∼
1
n
N
(
nµ, nσ2

)
= N

(
µ,

σ2

n

)
.

2.1.2 The Chi-square Distribution of the Sampling Variance S2

We have studied how to calculate E[S2] for general i.i.d. samples. Under the normal assumption,
we can further explicitly derive the exact distribution of S2.

Before presenting the theorem, we first discuss some further results regarding chi-square distri-
butions beyond previous chapters.

Definition 2.1.1 (Chi-Square Distributions). Let Z1, · · · , Zn
iid∼ N (0, 1). Then,

V = Z2
1 + · · ·+ Z2

n ∼ χ2
n, (2.1.2)

where n is the degrees of freedom.
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This definition implies a nice additivity result for the chi-square variables, which will be used
later when deriving confidence intervals in some complicated two-sample cases. The result is
presented in the next theorem.

Theorem 2.1.2. If V1 ∼ χ2
n1 and V2 ∼ χ2

n2 are independent, then V = V1 + V2 ∼ χ2
n1+n2 .

Proof of Theorem 2.1.2. By definition, we write:

V1 = Z2
1 + · · ·+ Z2

n1 , V1 = Z̃2
1 + · · ·+ Z̃2

n2 ,

where all of Z1, · · · , Zn, Z̃1, · · · , Z̃n2 are independent implies by the independence between V1
and V2.

Then,
V = V1 + V2 = Z2

1 + · · ·+ Z2
n1 + Z̃2

1 + · · ·+ Z̃2
n2 ∼ χ2

n1+n2 .

When calculating different quantities about chi-square distribution, such as the moments, it is
often useful to use its equivalence to Gamma distributions.

Theorem 2.1.3. The χ2
n distribution is the Gamma(n/2, 1/2) distribution.

Proof of Theorem 2.1.3. First, we show that the PDF of Z2
1 and Gamma(1/2, 1/2) are the same.

Let F (x) and f(x) be the CDF of Z2
1 respectively. Also, use Φ(x) and φ(x) to denote the CDF

and PDF of the standard normal variable, respectively.

For x > 0,

F (x) = P(Z2
1 < x) = P(

√
x < Z1 <

√
x) = Φ(

√
x)− Φ(

√
−x) = 2Φ(

√
x)− 1,

where we used a property of the normal CDF that Φ(x) + Φ(−x) = 1 for x ∈ R. Then, taking
derivative on both sides,

f(x) = F ′(x) = 2φ(
√

x) · 1
2
√

x
= 2 · 1√

2π
e− x

2 · 1
2
√

x
= 1√

2π
x− 1

2 e− x
2 .

For the Gamma(1/2, 1/2) distribution, we plug in α = λ = 1/2 to the general PDF formula and
use the fact that Γ(1/2) =

√
π:

λα

Γ(α)
xα−1e−λx −→

√
1/2

Γ (1/2)
x− 1

2 e− x
2 = 1√

2π
x− 1

2 e− x
2 ,

which is equivalent to the PDF f(x) of Z2
1 . Then, because V = Z2

1 + · · · + Z2
n is the sum of n

i.i.d. Gamma(1/2, 1/2) random variables, we have V ∼ Gamma(n/2, 1/2).

Theorem 2.1.3 also helps us to memorise the mean and variance formulas for chi-square distri-
butions. Recall that for X ∼ Gamma(α, λ), E[X] = α/λ and Var(X) = α/λ2. Therefore, for
V ∼ χ2

n, it immediately implies that E[V ] = n and Var(V ) = 2n.

The next theorem presents the relationship between the chi-square distribution and sample
variance S2 for under normal assumptions.

Theorem 2.1.4. If X1, · · · , Xn
iid∼ N (µ, σ2), then S2 has the following distribution:

S2 ∼ σ2

n− 1
χ2

n−1, or equivalently, (n− 1)S2

σ2 ∼ χ2
n−1. (2.1.3)

Furthermore, S2 is independent of X̄.
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The proof is beyond the scope of the CS1 exam. Here, we provide some intuitive explanations
to help understand the results, so that we do not have to memorise blindly.

• (n−1)S2

σ2 ∼ χ2
n−1: Writing down the quantity on the left-hand side:

(n− 1)S2

σ2 = (n− 1)
σ2 · 1

n− 1

n∑
i=1

(Xi − X̄)2 =
n∑

i=1

(
Xi − X̄

σ

)2

If we replace the sample mean X̄ by the population mean µ, the right-hand side becomes:
n∑

i=1

(
Xi − µ

σ

)2
=

n∑
i=1

Z2
i ∼ χ2

n,

where Zi ∼ N (0, 1) represents the standard normal and the resulting χ2 distribution is
by definition.
When we have the sample mean X̄ as in S2, the argument above does not hold. However, it
is not far away from the truth. Although each of the summand ((Xi−X̄)/σ)2 is dependent
with each other due to the common random variable X̄, it can be shown that,

n∑
i=1

(
Xi − X̄

σ

)2

=
n−1∑
i=1

Z2
i ∼ χ2

n−1.

Intuitively speaking, due to X̄, we lose one degree of freedom. To illustrate, think about
when n = 3, and we can calculate X3 from X1, X2 and X̄ through X3 = 3X̄ −X1 −X2,
and the same for X1 and X2. The formal proof relies on linear algebra and properties of
multivariate normal distributions, so we refer interested readers to advanced statistical
textbooks.

• X̄ and S2 are independent: The key is to show that, very surprisingly, each of Xi −
X̄ is independent of X̄. This is a very counter-intuitive result since X̄ also appears in
Xi − X̄. The formal proof, again requires knowledge of linear algebra and multivariate
normal distributions or advanced statistical inference theory (Basu’s Theorem). We skip
the technical details here.
This result immediately applies that X̄ and S2 are independent since each summand in

S2 = 1
n− 1

n∑
i=1

(Xi − X̄)2

is a function of Xi − X̄.
Here, we discuss a simpler case to demonstrate the independence between Xi − X̄ and
X̄. Consider adjusting X̄ → X̄ + c by setting Xi → Xi + c for all i, where c ∈ R. As a
result, Xi − X̄ → (Xi + c)− (X̄ + c) = Xi − X̄ remains unchanged. That says, Xi − X̄ is
independent of X̄, as Xi − X̄ is invariant from the change of X̄.
It is also worth noting that the independence between X̄ and S2 only holds when the
underlying distribution is normal, and not for any other distributions. To see why this
property does not hold in non-normal cases, imagine X ∼ Poi(λ), and larger X̄ would
likely imply larger S2, as E[X] = Var(X) = λ for Poisson distributions.

The chi-square distribution of S2 allows us to investigate its further properties with more
ease. For example, Var(S2) in general has a messy formula. However, when under the normal
assumption, it can be easily derived.
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Theorem 2.1.5. If X1, · · · , Xn
iid∼ N (µ, σ2), then we have:

Var(S2) = 2σ4

n− 1
. (2.1.4)

Proof of Theorem 2.1.5. From Theorem 2.1.4, we have:

S2 ∼ σ2

n− 1
χ2

n−1.

Taking variance on both sides, we get:

Var(S2) = σ4

(n− 1)2 · 2(n− 1) = 2σ4

n− 1
,

where we use the result that Var(X) = 2n for X ∼ χ2
n.

2.1.3 The t-Distributions and the t-Statistic

Recall that from Theorem 2.1.1 when X1, · · · , Xn
iid∼ N (µ, σ2), X̄ ∼ N (µ, σ2/n). When dealing

with normal random variable, it is common to standardise it by subtracting the mean and being
divided by the standard deviation. Thus, for X̄, the following is the so-called z-statistic, as the
resulting distribution is standard normal:

z = X̄ − µ

σ/
√

n
∼ N (0, 1). (2.1.5)

This quantity can be useful for making inference (specifically, confidence intervals or hypothesis
testing) on µ, where we compare the observed sample mean X̄ with the assumed value of the
true mean µ.

However, this z-statistic has little practical use since we never know the value of σ. In practice,
we replace the unknown standard deviation σ by the sample standard deviation S =

√
S2,

calculated by taking square root of the sample variance. The resulting quantity is called the
t-statistic, and as the name suggests, it follows a t-distribution:

Theorem 2.1.6. If X1, · · · , Xn
iid∼ N (µ, σ2), then

t = X̄ − µ

S/
√

n
∼ tn−1. (2.1.6)

You can think about this as one way that t-distributions are defined, which is exactly the case
in the history of statistics. In general, t-distributions are defined in a similar fashion to Theorem
2.1.6:

Definition 2.1.2 (t-Distributions). Let Z ∼ N (0, 1) and V ∼ χ2
n. Then,

T = Z√
V/n

, (2.1.7)

where n is the degrees of freedom.

Based on Definition 2.1.2, the proof of Theorem 2.1.6 is straightforward:
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Proof of Theorem 2.1.6. Recall that X̄ ∼ N (µ, σ2/n) and (n− 1)S2/σ2 ∼ χ2
n−1. Therefore, we

have the following representations:

X̄ = µ + σ√
n

Z, S2 = σ2

n− 1
V,

where Z ∼ N (0, 1) and V ∼ χ2
n−1. Plugging into the expression of the t-statistic, we get:

t = X̄ − µ

S/
√

n
= σZ/

√
n√

σ2V/(n(n− 1))
= Z√

V/(n− 1)
∼ tn−1.

The t-distributions have similar symmetric bell-shapes to the normal distributions. To illustrate,
we plot the PDF curves for the t-distributions with 5 degrees of freedom, 20 degrees of freedom,
and for the standard normal distribution.
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There are two important properties related of the t-distributions that we can observe from the
plot.

1. The t-distributions have heavier tails than the normal distributions:
The heavy-tail property of the t-distributions implies that we are expected to observe more
extreme values than the normal distributions. Given the stronger tolerance to extreme
observations, the t-distributions are commonly used in robust statistics and quantitative
risk management.
A more mathematical way to see the heavy-tail property is to compare the PDF of the
t-distributionsi to the normal:

tn : f(x) = Γ((n + 1)/2)√
πnΓ(n/2)

·
(

1 + x2

n

)−(n+1)/2

, N (0, 1) : g(x) = 1√
2π

e− x2
2 .

iYou are not required to memorise the PDF of the t-distributions for the exam, and we only present it for
demonstrating the argument here.

Copyright © 2025 ACTEX Learning ACTEX Study Manual for Exam CS1
Yiping Guo, Ph.D., ASA and Gabriel Necoechea, Ph.D.



142 Statistical Inference

Without bothering with the messy normalising constants, the PDF of the t-distributions
behave like a power function x−n, but by contrast, the PDF of the normal distributions
behave like an exponential function e−x2 . Since power functions decay slower than expo-
nential functions (in the sense that exponential functions are at a smaller scale than the
power function when x→∞)ii, the t-distributions should have heavier tails.

2. A t-distribution converges to the standard normal distribution as the degrees of freedom
n→∞.
Proof. This follows directly from the Law of Large Numbers. Define

Tn = Z√
Vn/n

∼ tn,

where Z ∼ N (0, 1) and Vn ∼ χ2
n. By the definition of chi-square distributions, we have

Vn = Z2
1 + · · ·+ Z2

n for Z1, · · · , Zn
iid∼ N (0, 1). Therefore, by the Law of Large Numbers,

Vn

n
= Z2

1 + · · ·+ Z2
n

n
−→ E[Z2

1 ] = 1.

Last,
Tn = Z√

Vn/n
−→ Z ∼ N (0, 1).

(To make the final step more rigorous, we actually need to apply the so-called Slutsky’s
theorem. We omit the technical details here, but the main argument should be straight-
forward to understand.)
Alternatively, we can show that the PDF of the t-distributions converge to the standard
normal PDF (ignoring the normalising constants):

lim
n→∞

(
1 + x2

n

)−(n+1)/2

= lim
n→∞

(
1 + x2

n

)−n/2

= e− x2
2 ,

where we use the result from Calculus that (1 + x/n)n → ex as n→∞ for x ∈ R.

2.1.4 The F -Distributions and the F -Statistic

Another distribution related to the normal distributions is the F -distribution. The name “F”
represents the one of the most prominent statisticians, Ronald A. Fisher, who more or less
invented the F -distributions.

Unlike the z-statistic and t-statistic which are used mainly for making inference on the mean of a
single normal distribution, the F -statistic, as defined below, cares about the ratio of the variances
of two independent normal distributions. To set things up, suppose we have X1, · · · , Xm

iid∼
N (µ1, σ2

1), Y1, · · · , Yn
iid∼ N (µ2, σ2

2) and all of X1, · · · , Xm and Y1, · · · , Yn are independent. Say
we are interested in the variance ratio σ2

1/σ2
2, and most relevant quantity we can obtain from

the sample is the ratio of sample variances S2
1/S2

2 . This is exactly what a F -statistic tries to
characterise and where the F -distributions arise.

First, we give the definition of the F -distributions:

iiIn case the readers are familiar with algorithm analysis or the big-O notations, a rigorous way to express
that g(x) decays faster than f(x) as x → ∞ is f(x) = o(g(x)).
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Definition 2.1.3 (F -Distributions). Let V1 ∼ χ2
m and V2 ∼ χ2

n. Furthermore, assume that V1
and V2 are independent. Then,

F = V1/m

V2/n
∼ Fm,n, (2.1.8)

where m and n are the two parameters to control the degrees of freedom of the F -distributions.

Then, we define the F -statistic based on the sample variances ratio S2
1/S2

2 and show that it
follows the F -distribution.

Theorem 2.1.7. Assume that X1, · · · , Xm
iid∼ N (µ1, σ2

1), Y1, · · · , Yn
iid∼ N (µ2, σ2

2). Further-
more, all of X1, · · · , Xm and Y1, · · · , Yn are independent, then

F = S2
1/S2

2
σ2

1/σ2
2
∼ Fm−1,n−1, (2.1.9)

where the sample variances are defined as:

S2
1 = 1

m− 1

m∑
i=1

(Xi − X̄)2, S2
2 = 1

n− 1

n∑
i=1

(Yi − Ȳ )2.

Proof of Theorem 2.1.7. Recall that S2
1 ∼ χ2

m and S2
1 ∼ χ2

m. Therefore, we have the following
representations:

S2
1 = σ2

1
m− 1

V1, S2
2 = σ2

2
n− 1

V2,

where V1 ∼ χ2
m−1 and V2 ∼ χ2

n−1. Plugging into the expression of the F -statistic, we get:

F = S2
1/S2

2
σ2

1/σ2
2

= V1/(m− 1)
V2/(n− 1)

∼ Fm−1,n−1.

There are several important properties of the F -distributions that might be useful in the exam.

Theorem 2.1.8. If X ∼ Fm,n, then, 1/X ∼ Fn,m.

Proof of Theorem 2.1.8. The proof is trivial using the definition of the F -distributions. Let
V1 ∼ χ2

m and V2 ∼ χ2
n, then,

F = V1/m

V2/n
∼ Fm,n =⇒ 1

F
= V2/n

V1/m
∼ Fn,m.

This result can be used to derive a more important property of the F-scores. An F -score is the
quantity that represents the critical value of a F -distribution with a fixed right tail probability.
More precisely, we use Fα,m,n to denote the value of c such that P(F > c) = α, where F ∼ Fm,n.
Theorem 2.1.8 has a direct implication of a nice symmetry property of F -scores, which will
be useful when deriving the confidence interval for the variance ratio of two important normal
samples.

Theorem 2.1.9. For α ∈ (0, 1) and m, n ∈ N, the following result for the F -scores holds:

F1−α,m,n = 1
Fα,n,m

(2.1.10)
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Proof of Theorem 2.1.9. The proof is a direct application of Theorem 2.1.8. Let f1 = F1−α,m,n

and f2 = Fα,n,m. We have:

P(Fm,n > f1) = 1− α =⇒ P(Fm,n < f1) = α.

By Theorem 2.1.8, we have Fm,n
d= 1/Fn,m, therefore,

P(Fm,n < f1) = P
(

1
Fn,m

< f1

)
= P

(
Fn,m >

1
f1

)
,

which implies f2 = 1/f1, as desired.

The last theorem can be useful in the context of regression analysis.

Theorem 2.1.10. If T ∼ tn, then, T 2 ∼ F1,n.

Proof of Theorem 2.1.10. The proof is also straightforward using the definition of the t-distributions,
chi-square distributions and F -distributions. Let Z ∼ N (0, 1) and V ∼ χ2

n, then,

T = Z√
V/n

∼ tn =⇒ T 2 = Z2/1
V/n

∼ F1,n,

where we use the fact that Z2 ∼ χ2
1.

This theorem can be applied in cases when we are asked to calculate the values of an F -statistic,
but we are only given the value of the corresponding t-statistic, or vise versa.

Exercises

Exercise 2.1.1.
 

 

A factory produces metal rods with diameters that follow a normal
distribution with a mean of 20 mm and a variance of 2.5 mm2. A quality control team
selects a random sample of 16 rods and records their diameters.

(a) Determine the sampling distribution of the sample variance S2.

(b) Find the mean and variance of S2.

Solution.

(a) For a random sample of size n from a normal distribution N (µ, σ2), the sample vari-
ance S2 follows:

(n− 1)S2

σ2 ∼ χ2
n−1

Here, n = 16 and σ2 = 2.5, so
15S2

2.5
∼ χ2

15

Thus, the sampling distribution of S2 is:

S2 ∼ 1
6

χ2
15
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(b) For a chi-squared distributed random variable X ∼ χ2
v, the mean and variance are:

E[X] = v, Var(X) = 2v

Using S2 ∼ χ2
15/6 from (a), we get:

E[S2] = 6E[χ2
15] = 1

6
× 15 = 2.5,

Var(S2) =
(1

6

)2
Var(χ2

15) =
(1

6

)2
× (2× 15) = 0.8333.

Exercise 2.1.2.
 

 

A coffee shop measures the daily average temperature of its brewed
coffee. The temperature follows a normal distribution with a mean of 80.5◦C and a standard
deviation of 5.4◦C. A random sample of 36 days is taken. What is the probability that the
sample mean temperature falls between 79.2◦C and 81.8◦C?

Solution. The sample mean follows:

X̄ ∼ N
(

80.5,

( 5.4√
36

)2
)

= N (80.5, 0.92).

Therefore, by standardizing

P
(
79.2 ≤ X̄ ≤ 81.8

)
= P

(79.2− 80.5
0.9

≤ X̄ ≤ 81.8− 80.5
0.9

)
= Φ(1.44)− Φ(−1.44) = 0.8502.

Exercise 2.1.3.
 

 

A random sample of size 7 is taken from a normal population with
variance 16. Find the probability that the sample variance falls between 12 and 20.

Solution. For a normal population with variance σ2, the sample variance S2 follows:

(n− 1)S2

σ2 ∼ χ2
n−1

With n = 7 and σ2 = 16,
6S2

16
∼ χ2

6.

Transforming the bounds:

P(12 ≤ S2 ≤ 20) = P
(6(12)

16
≤ χ2

6 ≤
6(20)

16

)
= P(4.5 ≤ χ2

6 ≤ 7.5)

Using chi-squared tables:

P(12 ≤ S2 ≤ 20) = P(χ2
6 ≤ 7.5)− P(χ2

6 ≤ 4.5) = 0.66− 0.15 = 0.51.
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Exercise 2.1.4.
 

 

If S1 and S2 are the standard deviations of independent random samples
of sizes n1 = 60 and n2 = 30 from normal populations with variances σ2

1 = 10 and σ2
2 = 15,

find P(S2
1/S2

2 > 1.16).

Solution. The ratio of two independent sample variances follows an F -distribution:

S2
1/σ2

1
S2

2/σ2
2
∼ Fn1−1,n2−1

Substituting the given values:
S2

1/10
S2

2/15
∼ F59,29

Rearranging for S2
1/S2

2 :

P
(

S2
1

S2
2

> 1.16
)

= P
(

F59,29 >
1.16× 15

10

)
= P(F59,29 > 1.74)

Using F -distribution tables, P(F59,29 > 1.74) ≈ 0.10.

Exercise 2.1.5.
 

 

A researcher conducting Monte Carlo simulations has access only to
a random number generator that produces independent samples from a standard normal
distribution N (0, 1).

(a) Describe a procedure to generate random samples from a chi-square distribution with
4 degrees of freedom.

(b) Describe a procedure to generate random samples from a t-distribution with 6 degrees
of freedom.

(c) Describe a procedure to generate random samples from an F -distribution with 4 and
8 degrees of freedom.

(d) Explain why the inverse CDF method is not suitable for (a)-(c).

Solution.

(a) Generate four independent standard normal variables Z1, Z2, Z3, Z4 ∼ N (0, 1) and
compute:

X = Z2
1 + Z2

2 + Z2
3 + Z2

4

Then, X ∼ χ2
4.

(b) Generate Z ∼ N (0, 1) and Y ∼ χ2
6 using (a). Compute:

T = Z√
Y/6

.

Then, T ∼ t6.

(c) Generate X1 ∼ χ2
4 and X2 ∼ χ2

8 using (a). Compute:

F = X1/4
X2/8

.

Then, F ∼ F4,8.
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(d) The inverse CDF method requires computing the quantile function (inverse of the
cumulative distribution function). For (a)-(c), the CDFs of chi-square, t, and F -
distributions involve complex integral expressions that do not have closed-form so-
lutions, making direct inversion computationally infeasible.

Exercise 2.1.6.
 

 

(R Programming)

(a) Simulate 1000 values from a N (0, 1) distribution using an appropriate R command.
Use 2025 as the random seed.

(b) Simulate 1000 values from a χ2
5 distribution using an appropriate R command.

(c) Simulate 1000 values from a t5 distribution using your results from (a) and (b).

(d) Simulate 1000 values from a t25 distribution by directly calling an appropriate R
command.

(e) Comparing two appropriate plots of the values simulated from parts (c) and (d).
Explain your observations by referring to an important property of the t-distributions.

Solution.

(a) set.seed(2025)
normal.sim = rnorm(1000)

(b) chisq.sim = rchisq(1000,5)

(c) A random variable having the t5 distribution is defined as:

T = Z√
Y/5

, where Y = χ2
5.

Therefore,
t5.sim = normal.sim/sqrt(chisq.sim/5)

(d) t25.sim = rt(1000,25)

(e) par(mfrow=c(1,2)) hist(t5.sim) hist(t25.sim)

Histogram of t5.sim

t5.sim

F
re

qu
en

cy

−5 0 5 10

0
10

0
30

0

Histogram of t25.sim

t25.sim

F
re

qu
en

cy

−3 −1 0 1 2 3

0
50

10
0
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The histograms show that the t-distribution converges to the standard normal distri-
bution as the degrees of freedom increases.

2.2 Point Estimation

2.2.1 Models, Parameters and Statistical Inference

2.2.1.1 What is Statistical Inference?

In previous chapters, we have laid the foundations of probability theory. Specifically, we have
explored a variety of probability models and learned how to perform calculations with them.
For instance, if we assume a random variable X follows a particular distribution, we can derive
certain probabilistic quantities, such as E[X], Var(X), or P(X > 0).

Statistical inference operates in the reverse direction of probability theory. Instead of starting
with a known distribution to make statements about data, it begins with observed data and
attempts to infer the underlying distribution. For example, consider the following integer-valued
observations:

Value 1 2 3 4

# of Observations 100 101 102 97

Intuitively, one might guess that these data are sampled from a discrete uniform distribution
over {1, 2, 3, 4}. In the upcoming chapters, we will discuss how to make such inferences more
formally.

It is important to recognise that making inferences without any assumptions can be extremely
challenging, or even impossible in many cases. For example, given six observations: 6, 10, 3, 2, 5, 5,
representing the number of insurance claims from different clients, it is impossible to determine
the exact model from which these observations are drawn. However, some models might seem
more plausible than others. For instance, a N (0, 1) distribution is unlikely since the observations
are discrete and positive. Similarly, a Poi(1000) distribution is improbable as it is unlikely to
sample six small numbers from a Poisson distribution with a mean of 1000.

2.2.1.2 Parametric and Non-Parametric Models

One common strategy to address the inference challenge is parametric modelling. Let X =
(X1, · · · , Xn) denote the observations, and X the underlying random variable. Parametric mod-
elling assumes that X follows a family of distributions characterised by an unknown parameter
(or multiple parameters) θ. The set of all possible values for θ is called the parameter space,
denoted as Θ. Generally, a parametric model is expressed as:

M = {f(x|θ) : θ ∈ Θ} , (2.2.1)

where f(x|θ) represents a family of distributions parametrised by θ.

The notation f(x|θ) used in this definition is actually extremely general. In elementary courses,
f(x|θ) denotes the probability density function of a continuous distribution. Here, it can also
refer to the probability mass function of a discrete distribution or more complicated distribu-
tions (neither discrete nor continuous). In advanced probability theory, all these concepts are
considered special cases of a more general concept called density from measure theory.
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Here are some common examples of parametric models and the corresponding parameter spaces:

• All Poisson distributions: {
f(x|λ) = e−λλx

x!
: λ > 0

}
;

• All normal distributions:{
f(x|µ, σ) = 1√

2πσ
e− (x−µ)2

2σ2 : µ ∈ R, σ > 0
}

.

In contrast, non-parametric modelling represents a family of distributions that cannot be
parametrised by a finite number of parameters. Non-parametric models generally impose weaker
assumptions and offer higher flexibility, though some inference tasks become more challenging.

A standard non-parametric model is “All distributions with finite variances”. Although proving
that this model cannot be parametrised is difficult, the key point is that it is too broad to be
described by any parametric models.

In this manual, we will primarily focus on parametric models in the context of statistical infer-
ence but will also introduce a few simple non-parametric techniques, such as bootstrapping and
chi-square goodness-of-fit tests.

2.2.1.3 Frequentist and Bayesian Inference

Under the parametric modelling framework, there are various approaches to perform statisti-
cal inference. The two most prominent approaches are frequentist inference and Bayesian
inference.

Suppose for a set of data X, we have assumed a parametric model M = {f(x|θ) : θ ∈ Θ}. The
fundamental difference between frequentist and Bayesian inference is straightforward:

• Frequentist: Treat the parameter θ as an unknown constant. The goal is to estimate θ and
infer the distribution fθ(x).

• Bayesian: Treat the parameter θ as a random variable. Use the data to update the distri-
bution of θ.

The debate between frequentist and Bayesian methods has persisted for a long time. Frequentist
techniques often require large samples of identical random experiments, which may not always
be feasible, but they work well in many scenarios. In the next chapters, we will delve into three
main areas of frequentist inference:

• Point estimation: Use a number θ̂ to estimate θ.

• Interval estimation: Use an interval (Lθ(X), Uθ(X)) to estimate θ, considering the esti-
mating uncertainty.

• Hypothesis testing: Given a hypothesis H0 on θ or the model, use the data X to test
whether the hypothesis is likely to be true.

Conversely, Bayesian methods do not rely on large samples and resemble human reasoning more
closely. However, their effectiveness depends on the appropriate choice of priors and computa-
tional challenges. We will explore Bayesian inference in Chapter 4 and discuss its applications
in credibility theory.
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2.2.1.4 Introduction to Point Estimation

In this section, we will study point estimation, perhaps one of the most intuitive and simplest
form of statistical inference. As the name suggests, point estimation uses a single number to
estimate each parameter in a model.

Throughout the discussion, we assume that the data X = (X1, · · · , Xn) are i.i.d. samples from
a statistical model f(x|θ). Recall that fθ(x) represents a family of distributions parametrised
by θ, therefore, once we derive an appropriate value of θ from the data X, we can specify the
distribution exactly and make further probabilistic calculations.

Formally, a point estimator of the parameter θ is a function of the data X:

θ̂(X) = θ̂(X1, · · · , Xn). (2.2.2)

Although θ(X) is a scalar, it is a random variable, depending on the random sample X. That is,
given different observations, we will get different estimate of θ̂. To make the distinction clearer,
suppose x = (x1, · · · , xn) is a realisation of X = (X1, · · · , Xn), which means x are non-random
constants. Then, a point estimate of the parameter θ is a function of the particular observation
x:

θ̂(x) = θ̂(x1, · · · , xn), (2.2.3)

where θ̂(x) is now a non-random constant. In practice or the exam, it is unlikely that you
need to distinguish these two concepts very rigorously, since we often only have one set of data
and simply need to calculate a single estimate. For simplicity, we usually use θ̂ to denote the
parameter estimate (or estimator) of θ.

2.2.2 Method of Moments Estimation

Many common distributions have their means as one of the parameters, for example, µ in
N (µ, σ2) and λ in Poi(λ). Therefore, a natural way to estimate the parameter θ is to match the
sample mean to the population mean (either θ itself or a function of θ). Since the mean is also
called the first moment of a random variable, this method is called the method of moments
estimation (MME), in the case of only one parameter.

We use some simple examples to demonstrate the procedure of the MME.

Example 2.2.1 (Poisson MME).
 

 

Suppose X1, · · · , Xn
iid∼ Poi(λ). Derive the MME λ̂ for

λ.iii

Solution. For a Poisson random variable X ∼ Poi(λ), it has mean E[X] = λ. The MME for
λ is obtained by simply matching the population mean λ to the sample mean X̄:

λ̂ = X̄.

For most distributions, the population mean is not the parameter itself, but a function of the
parameter. In these cases, we can match the sample mean X̄ to the population mean (a function
of θ) to solve for θ̂.

iiiIn some other texts, people might prefer to use the notation θ̃ to denote method of moments estimator and
use θ̂ to denote method of maximum likelihood estimator, to be introduced later in this chapter. In this manual,
we do not make this distinction and use λ̂ to denote a point estimator in general.
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Example 2.2.2 (Geometric MME).
 

 

Suppose X1, · · · , Xn
iid∼ Geo(p), with the probability

mass function:
p(x) = p(1− p)x−1, x ≥ 1.

Derive the MME p̂ for p.

Solution. For a geometric random variable X ∼ Geo(p) starting from 1, we have shown that
it has mean E[X] = 1/p. The MME for p is obtained by matching the population mean 1/p
to the sample mean X̄:

E[X] = 1
p

= X̄ =⇒ p̂ = 1
X̄

.

In general, the MME can be applied for distributions with more than one parameters. However,
for more than two parameters, we often prefer the maximum likelihood estimation, and the
corresponding MME is rarely used in practice or tested in the exam.

Here, we briefly discuss the case of two parameters. In this case, we need to match both the
first moments and the second moments. By such, we obtain two equations, which normally
allow us to solve for the two parameters. For clarity, we use µ̂1 = (X1 + · · · + Xn)/n and
µ̂2 = (X2

1 + · · ·+ X2
n)/n to denote the first two sample moments, respectively.

Example 2.2.3 (Normal MME).
 

 

Suppose X1, · · · , Xn
iid∼ N (µ, σ2). Derive the MME

for µ and σ2.

Solution. For a normal random variable X ∼ N (µ, σ2), it has mean E[X] = µ, and the
second moment E[X2] = Var(X) + (E[X])2 = µ2 + σ2. The MME for µ and σ2 is obtained
by matching the first two moments:

E[X] = µ = µ̂1, E[X2] = µ2 + σ2 = µ̂2.

=⇒ µ̂ = µ̂1, σ̂2 = µ̂2 − µ̂2
1.

Example 2.2.4 (Gamma MME).
 

 

Suppose X1, · · · , Xn
iid∼ Gamma(α, λ) with the prob-

ability density function:
f(x) = λα

Γ(α)
xα−1e−λx.

Derive the MME for α and λ.

Solution. For a Gamma random variable X ∼ Gamma(α, λ), it has mean E[X] = α/λ, and
the second moment

E[X2] = Var(X) + (E[X])2 = α

λ2 + α2

λ2 .

The MME for α and λ is obtained by matching the first two moments:

E[X] = α

λ
= µ̂1,

E[X2] = α

λ2 + α2

λ2 = µ̂2.

To solve this system of equations, we first rearrange the first equation to α = λµ̂1 and
substitute into the second equation:

λµ̂1 + λ2µ̂2
1

λ2 = µ̂2 =⇒ λ̂ = µ̂1
µ̂2

2 − µ̂2
1
.
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Substituting this back to the first equation, we obtain:

α̂ = λ̂µ̂1 = µ̂2
1

µ̂2
2 − µ̂2

1
.

It should be noted that the MME have various limitations and are rarely used in practice or
tested in the exam. Although it can give reasonable estimators for some simple distributions
we have seen before, it is challenging to generalise this approach to more complex probabilistic
models, such as regression or more advanced neural networks. Here we use two single-parameter
examples to demonstrate some scenarios that the MME can fail to work:

• The population mean does not depend on the parameter:

Suppose X1, · · · , Xn
iid∼ U(−θ, θ). Here, E[X] = 0, which is independent of the parameter

θ. In this case, no matter what samples are drawn, the MME is always 0 and is not a
proper estimator.

• The population mean does not exist:
Suppose X1, · · · , Xn are i.i.d. samples from a distribution with the probability density
function:

f(x) = 1
x2 , x ≥ 1.

You can easily check this is a valid density function by
∫∞

1 1/x2dx = (−1/x)|∞1 = 1, but
the expected value is infinity:

E[X] =
∫ ∞

1
x · 1

x2 dx = log x
∣∣∣∞
1

=∞.

In this case, the MME approach fails.

2.2.3 Maximum Likelihood Estimation

2.2.3.1 General Framework

A more desirable method of point estimation is to utilise the full information of the underlying
distributions, instead of only a finite number of moments as in the MME. In this subsection,
we will discuss one such more general point estimating method, the maximum likelihood
estimation, known as the MLE. The MLE is so popular and dominant that it is basically the
only point estimating method used in a wide range of areas in statistics and modern machine
learning.

The idea of MLE is actually quite simple. Say we have i.i.d. samples X = (X1, · · · , Xn). Assume
that all data are sampled from a certain type (or family) of distributions fθ(x), where θ is the
undetermined parameter. Our goal is to find the best point estimator θ̂ so that the model fθ̂(x)
assigns the highest likelihood to the observed sample X, among all possible θ for fθ(x).

A simple example will make this point clearer. Suppose you have a potentially unfair coin with
head probability p. You tossed the coin 10 times and got X heads, where the number of heads
X is modelled by a binomial distribution Bin(10, p). When you got 5 heads, that is, X = 5,
the coin seems fair and you might guess p = 0.5; by contrast, p = 0.1 is not convincing as it
is unlikely to obtain 5 heads out of 10 tosses given such a low head probability. We can also
perform simple calculations to make this point concrete:

P(X = 5|p = 0.5) =
(

10
5

)
· 0.510 = 0.246, P(X = 5|p = 0.1) =

(
10
5

)
· 0.15 · 0.95 = 0.001.
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To formalise the procedure, we first need to define the terminology “likelihood function” for a
set of observations. We focus on the case of single parameter, and will brief discuss the multi-
parameter case towards the end of this part.

Definition 2.2.1 (Likelihood function). Let X = (X1, · · · , Xn) be i.i.d. samples. Then, the
likelihood function is defined as:

L(θ) =
n∏

i=1
f(xi|θ), (2.2.4)

where f(x|θ) is the probability density function if X is continuous or the probability mass
function if X is discrete.

We make several remarks on this definition.

• It should be noted that likelihood function L(θ) is a function of the parameter θ rather
than the data X. This is because when evaluating the likelihood, we assume that the
data is fixed but the parameter is yet to be determined (not random, but an unknown
constant). The goal of the MLE is to use this function to choose the best parameter θ for
a fixed set of data.

• The definition L(θ) =
∏n

i=1 f(xi|θ) is a product of individual contributions to the total
likelihood. This representation replies on the assumption that all samples are indepen-
dent. Without the independence assumption, we can only define the likelihood function as
L(θ) = f(x|θ), where here f is the joint distribution of X. Throughout this chapter, we
always assume the independence unless explicitly stated otherwise. The non-independent
scenario is much more complicated and beyond the scope of the CS1 syllabus.

• Technically speaking, the random variable X can be more complex and neither contin-
uous or discrete. In this case, f(x|θ) is neither a density function nor a mass function.
Consider a random variable X that has 1/2 probability taking the value of 0, and has 1/2
probability sampled from an exponential distribution Exp(λ). Here, we can treat X as a
“weighted mixture” of a discrete variable (a constant at 0) and a continuous variable (the
exponential). In this case,

f(x|θ) =
{

0.5 x = 0
0.5 · λe−λx x > 0

In the CS1 exam, you will mostly encounter the purely discrete or continuous cases, but
we mention the general setting here for completeness.

The MLE aims at finding the optimal value of θ (if it exists) to maximise the likelihood function
L(θ). However, it turns out that directly maximising L(θ) is challenging in most cases. Therefore,
in practice, we instead maximise the so-called log-likelihood function, simply defined as the
logarithm of L(θ):

Definition 2.2.2 (Log-likelihood function). Let X = (X1, · · · , Xn) be i.i.d. samples. Then, the
log-likelihood function is defined as:

ℓ(θ) = logL(θ) =
n∑

i=1
log f(xi|θ). (2.2.5)

Because the log function is strictly increasing, a value maximises the likelihood if and only if it
maximises the log-likelihood.
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Why does taking the log significantly simplify the calculation of the MLE? Maximising the
likelihood function L(θ) directly is often difficult because it involves differentiating a product
of multiple functions, which is computationally complex. Taking the logarithm to obtain the
log-likelihood function ℓ(θ) = logL(θ) simplifies the calculations in two ways simultaneously:

• First, it transforms the product of individual likelihoods
∏

f(·) into a sum of log-likelihoods∑
log f(·), making differentiation much easier.

• Second, individual likelihoods are generally products of multiple terms, so taking the log of
each likelihood also reduces these from a product form to a sum form, further simplifying
the differentiation.

2.2.3.2 Examples

Without any doubts, the MLE is unarguably one of the most important statistical techniques. In
the CS1 exam, it is almost surely that the MLE will be tested in multiple questions. Therefore,
we use this dedicated subsection to discuss how to derive the MLE in many examples, ranging
from the simplest standard distributions, to some more complicated cases.

We first state the standard procedure of performing an MLE in the single parameter cases:

1. For a set of i.i.d. samples X1, · · · , Xn, write down the likelihood function L(θ) and corre-
sponding log-likelihood function ℓ(θ).

2. Find the first-order derivative ℓ′(θ) and set it to 0.

3. Solve ℓ′(θ) = 0 and obtain the MLE θ̂.

4. Check that the second-order derivative at the MLE is negative ℓ′′(θ̂) < 0, to make sure
that θ̂ is indeed a maximiser of ℓ(θ).

It is worth noting that this is only the common strategy for maximising ℓ(θ). There exist more
complicated scenarios in which this procedure cannot work:

• ℓ(θ) is not differentiable:
One example of this is the so-called shifted Laplace distribution, with the density function:

f(x) = 1
2

e−|x−µ|.

The corresponding log-likelihood function ℓ(µ) involves absolute values of µ, which is not
differentiable. In cases like this, we have to use more advanced optimization techniques to
find θ̂, which is beyond the scope of the CS1 syllabus.

• ℓ′(θ) = 0 has no solutions or multiple solutions:
In these cases, it means that ℓ(θ) has no or multiple stationary points. Further investi-
gations of the second-order derivatives are required to study the monotonicity of ℓ(θ) to
find the global maximiser θ̂. We will later demonstrate this case in Example 2.2.9 using
uniform distributions.

• ℓ′(θ) = 0 cannot be solved analytically:
In the CS1, we mostly study cases where ℓ′(θ) = 0 can be solved explicitly and only has a
unique solution. However, in practice, particularly in modern machine learning, there are
very few cases that the MLE can be found analytically, and certain numerical optimization
techniques are necessary.
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There are a vast range of numerical methods to solve the MLE numerically. We will not
cover any of these techniques as they are beyond the scope of the syllabus. Instead, we
only briefly mention two important techniques for interested reader:

� Newton-Raphson method: A numerical method to find the roots of an equation,
where ℓ′(θ) = 0 is our target equation here. This method is commonly used in
parameter estimation of the generalised linear models.

� Expectation-Maximisation (EM) algorithm: An numerical approach to find the
MLE without directly solving ℓ′(θ) = 0. It iteratively finds an approximation ℓ̃(θ) for
ℓ(θ) and solves ℓ̃′(θ) = 0. This method is particularly useful in clustering algorithms
in machine learning.

We will start with some simple examples to demonstrate the standard procedure. You might
notice that the MLE leads to the same estimator as the MME for many distributions, particular
for those with a parameter directly linked to the mean.

Example 2.2.5 (Bernoulli & Binomial MLE).
 

 

Suppose X1, · · · , Xn
iid∼ Bernoulli(p).

Derive the MLE of p.

Solution.

L(p) =
n∏

i=1
pXi(1− p)1−Xi

=⇒ ℓ(p) =
n∑

i=1
[Xi log p + (1−Xi) log(1− p)]

= log p ·
n∑

i=1
Xi + log(1− p) ·

(
n−

n∑
i=1

Xi

)
.

=⇒ ℓ′(p) = 1
p

n∑
i=1

Xi −
1

1− p

(
n−

n∑
i=1

Xi

)
= 0

=⇒ (1− p)
n∑

i=1
Xi = p

(
n−

n∑
i=1

Xi

)

=⇒ p̂ =
∑n

i=1 Xi

n
= X̄.

We finally check the second-order derivative:

=⇒ ℓ′′(p̂) = −
∑n

i=1 Xi

p̂2︸ ︷︷ ︸
<0

−n−
∑n

i=1 Xi

(1− p̂2)︸ ︷︷ ︸
<0

< 0.

Therefore, the MLE of p is the sample mean p̂ = X̄.

It is worth noting that this question is equivalent to “For X ∼ Bin(n, p), find the MLE of
p”, since the sum of n i.i.d. Bernoulli variables is a binomial variable.

Example 2.2.6 (Geometric MLE).
 

 

Suppose X1, · · · , Xn
iid∼ Geo(p), with the probability

mass function:
p(x) = p(1− p)x−1, x ≥ 1.

Derive the MLE of p.
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Solution.

L(p) =
n∏

i=1
p(1− p)Xi−1

=⇒ ℓ(p) =
n∑

i=1
[log p + (Xi − 1) log(1− p)]

= n log p− log(1− p) ·
(

n∑
i=1

Xi − n

)

=⇒ ℓ′(p) = n

p
−
∑n

i=1 Xi − n

1− p
= 0

=⇒ (1− p)n = p
n∑

i=1
Xi − pn

=⇒ p̂ = n∑n
i=1 Xi

= 1
X̄

.

We finally check the second-order derivative:

=⇒ ℓ′′(p̂) = − n

p̂2︸ ︷︷ ︸
<0

−
∑n

i=1 Xi − n

(1− p̂2)︸ ︷︷ ︸
<0

< 0.

Therefore, the MLE of p is the inverse of the sample mean p̂ = 1/X̄.

Example 2.2.7 (Poisson MLE).
 

 

Suppose X1, · · · , Xn
iid∼ Poi(λ). Derive the MLE of λ.

Solution.

L(λ) =
n∏

i=1

e−λλXi

Xi!

=⇒ ℓ(λ) =
n∑

i=1
(−λ + Xi log λ− log Xi!) .

Since ℓ(λ) is a function of λ, we can treat any terms that do not involve λ as constants, and
these terms will become zero during the differentiation. This trick can sometimes heavily
simplify the calculation and will be frequently used in many places.

=⇒ ℓ(λ) = −nλ + log λ ·
n∑

i=1
Xi + const.

=⇒ ℓ′(λ) = −n +
∑n

i=1 Xi

λ
= 0

=⇒ λ̂ =
∑n

i=1 Xi

n
= X̄.

We finally check the second-order derivative:

=⇒ ℓ′′(λ̂) = −
∑n

i=1 Xi

λ̂2
< 0.

Therefore, the MLE of λ is the sample mean λ̂ = X̄.
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Example 2.2.8 (Exponential MLE).
 

 

Suppose X1, · · · , Xn
iid∼ Exp(λ), with the proba-

bility density function:
f(x) = λe−λx.

Derive the MLE of λ.

Solution.

L(λ) =
n∏

i=1
λe−λXi

=⇒ ℓ(λ) =
n∑

i=1
(log λ− λXi) = n log λ− λ

n∑
i=1

Xi

=⇒ ℓ′(λ) = n

λ
−

n∑
i=1

Xi = 0

=⇒ λ̂ = n∑n
i=1 Xi

= 1
X̄

.

We finally check the second-order derivative:

=⇒ ℓ′′(λ̂) = − n

λ̂2
< 0.

Therefore, the MLE of λ is the inverse of the sample mean λ̂ = 1/X̄.

We next look at the uniform distributions, which relies on a different approach to find the MLE.

Example 2.2.9 (Uniform MLE).
 

 

Suppose X1, · · · , Xn
iid∼ U(0, θ). Derive the MLE of θ.

Solution.

L(θ) =
n∏

i=1

1
θ

= θ−n

=⇒ ℓ(θ) = −n log θ.

Without further calculations, we can observe that ℓ(θ) is decreasing with θ. Therefore, ℓ′(θ)
is always negative and ℓ′(θ) = 0 has no solutions.

In this case, to maximise ℓ(θ) = −n log θ, we need to minimise log θ and thus minimise θ.
Notice that 0 ≤ Xi ≤ θ for all i = 1, · · · , n, we must have θ ≥ X1, · · · , θ ≥ Xn. This implies
that θ ≥ max(X1, · · · , Xn)iv. Therefore, the smallest possible value of θ is max(X1, · · · , Xn).

Therefore, the MLE of θ is θ̂ = max(X1, · · · , Xn).

For distributions with two parameters θ1, θ2, finding the MLE is essentially the same as the
single-parameter cases. Instead of finding the first-order derivative ℓ′(θ), we now need to calcu-
late the partial derivatives ∂ℓ/∂θ1 and ∂ℓ/∂θ2 and set both to 0. We use the most important
two-parameter distribution, the normal distribution, to illustrate.

ivThe quantity max(X1, · · · , Xn) is also called the largest order statistic of X1, · · · , Xn, denoted as X(n). The
theory of order statistics is reviewed in the appendix of this manual.
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Example 2.2.10 (Normal MLE).
 

 

Suppose X1, · · · , Xn
iid∼ N (µ, σ2). Derive the MLE of

µ and σ2.

Solution.

L(µ, σ2) =
n∏

i=1

1√
2πσ2 e− (Xi−µ)2

2σ2

=⇒ ℓ(µ, σ2) =
n∑

i=1

[
− log

√
2π − log σ2 − (Xi − µ)2

2σ2

]

= −n log σ2 − 1
2σ2

n∑
i=1

(Xi − µ)2 + const.

=⇒ ∂ℓ

∂µ
= 1

σ2

n∑
i=1

(Xi − µ) = 0,
∂ℓ

∂σ2 = − n

σ2 + 1
2σ4

n∑
i=1

(Xi − µ)2 = 0.

Solve this system of equations, we have:

µ̂ = 1
n

n∑
i=1

Xi = X̄, σ̂2 = 1
n

n∑
i=1

(Xi − X̄)2,

which give us the desired MLE of µ and σ2. Note that σ̂2 is slightly different from the
definition of the sample variance S2, as denominator is n instead of n− 1.

For the normal distributions, It can be shown that µ̂ and σ̂2 indeed maximise ℓ(µ, σ2). However,
checking the optimality of the MLE in the two-parameter cases is more technical and requires
knowledge of multivariable calculus. Instead of requiring the second-order derivative being neg-
ative, now we need to check that the Hessian matrix is negative definite. This is beyond the
scope of the CS1 syllabus.

2.2.4 Evaluating Point Estimators

A point estimator is a random variable, and its realised value depends on the data observed.
Consider a parameter θ in a continuous distribution and a corresponding point estimator θ̂(X).
We have P(θ̂(X) = θ) = 0 since θ̂(X) has a continuous distribution. This says, we will almost
surelyv obtain an estimate θ̂ different from its true value θ.

This fact does not mean point estimators are useless. For example, if an estimator gives us values
θ̂ quite close to the true parameter θ, even under varying the observed data, we will probably
argue that this is a decent estimator. Therefore, in the part, we will discuss some commonly
used concepts for evaluating the quality of point estimators.

Definition 2.2.3 (Bias and Unbiasedness of Estimators). Let θ̂ be a point estimator of a
parameter θ. Then, the bias of θ̂ is defined as:

Bias(θ̂) = E[θ̂]− θ. (2.2.6)

If the bias is 0, that is, E[θ̂] = θ, we call that θ̂ is an unbiased estimator.

If an estimator is unbiased, it tells us that if we repeat the experiment infinitely many times, on
average, the estimate θ̂ will be equal to the true value θ. Many common estimators are actually
unbiased:

vIn advanced probability theory, the word “almost surely” specifically means that an event A will happen
with probability one, that is, P(A) = 1.
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• µ̂ = X̄ for X ∼ N (µ, σ2). µ̂ is unbiased as E[µ̂] = E[X̄] = µ.

• λ̂ = X̄ for X ∼ Poi(λ). λ̂ is unbiased as E[λ̂] = E[X̄] = λ.

Unbiasedness is a good property for an estimator, but it does not tell the full story. Another
measurement of quality is called the variance:

Definition 2.2.4 (Variance and Standard Error of Estimators). Let θ̂ be a point estimator of
a parameter θ. Then, the variance of θ̂ is defined as:

Var(θ̂) = E[(θ̂ − E[θ̂])2], (2.2.7)

and the standard error of θ̂ is defined as:

se(θ̂) =
√

Var(θ̂). (2.2.8)

Either a high bias or high variance might result in unsatisfactory estimating performance. The
following two scenarios demonstrate the trade-off:

• Low bias but high variance: On average, θ̂ will be close to θ, but the estimate for a single
experiment is not reliable as it can heavily deviate from θ. For example, if θ = 5, you
might expect the realisations of θ̂ to be like 12, 4, 2, 10, 8, · · · .

• Low variance but high bias: The realisation of θ̂ will have small variations for different
samples, but on average, θ̂ is very different from θ. For the same example if θ = 5, you
might expect the realisations of θ̂ to be like 10, 9, 10, 11, 10, · · · .

The pictures below illustrate the two scenarios, where the black lines represent the density
function of the estimator θ̂, and the red dotted lines represent the true value of θ, which is set
to 5 here.
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Therefore, to find a desirable estimator, simply minimising one of the bias and variance is not
sufficient. Instead, we aim at obtain an estimator with a low bias and a low variance. This
motivates the concept of mean square error:
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Definition 2.2.5 (Mean Square Error). Let θ̂ be a point estimator of a parameter θ. Then,
the mean square error (MSE) of θ̂ is defined as:

MSE(θ̂) = E[(θ̂ − θ)2]. (2.2.9)

It turns out that the MSE integrates the bias and variance of an estimator, as we will show
now.

Theorem 2.2.1. Let θ̂ be a point estimator of a parameter θ. Then, its MSE can be decomposed
as the square of the sum of the bias and variance:

MSE(θ̂) = (Bias(θ̂))2 + Var(θ̂). (2.2.10)

Proof of Theorem 2.2.1.

MSE(θ̂) = E[(θ̂−θ)2] = E[(θ̂−E[θ̂])+(E[θ̂]−θ)]2 = (Bias(θ̂))2 +Var(θ̂)+2E[(θ̂−E[θ̂])(E[θ̂]−θ)].

The cross term can be shown to be 0:

E[(θ̂ − E[θ̂]) (E[θ̂]− θ)︸ ︷︷ ︸
constant

] = (E[θ̂]− θ) · E[θ̂ − E[θ̂]]︸ ︷︷ ︸
=E[θ̂]−E[θ̂]=0

= 0,

and this concludes the proof.

In practice, the MSE is perhaps the most commonly used criterion to evaluate the quality of
point estimators. In general, an estimator with a lower MSE is desired. For a parameter θ, an
estimator θ̂1 is said to be more efficient than another estimator θ̂2 if MSE(θ̂1) < MSE(θ̂2).

It should be noted that although unbiased estimators are commonly found in practice, they do
not necessarily have the lowest MSE. In some cases, introducing a small bias can lead to a big
variance decrease, giving an overall improvement of the MSE. This can be demonstrated in the
following example:

Example 2.2.11 (Comparing estimators for the normal variance).
 

 

Suppose
X1, · · · , Xn

iid∼ N (µ, σ2). We have two plausible estimators for σ2:

S2 = 1
n− 1

n∑
i=1

(Xi − X̄)2, σ̂2 = 1
n

n∑
i=1

(Xi − X̄)2,

where S2 is the sample variance, and σ̂2 is the MLE or MME of σ2.

(a) Compare the bias of S2 and σ̂2.

(b) Compare the MSE of S2 and σ̂2. Comment on your findings.

Solution.

(a) We have shown that E[S2] = σ2, thus S2 is an unbiased estimator of σ2. This implies
that σ̂2 is biased, with the bias equal to

Bias(σ̂2) = E[σ̂2]− σ2 = E
[

n− 1
n
· S2

]
− σ2 = − 1

n
σ2.
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(b) We first calculate the variances of both estimators. For S2, we know that:

Var(S2) = 2σ4

n− 1

Using this result, we have:

Var(σ̂2) = Var
(

n− 1
n
· S2

)
= (n− 1)2

n2 · 2σ4

n− 1
= 2(n− 1)σ4

n2

Therefore, the MSE can be calculated as:

MSE(S2) = (Bias(S2))2 + Var(S2) = 0 + 2σ4

n− 1
= 2σ4

n− 1

MSE(σ̂2) = (Bias(σ̂2))2 + Var(σ̂2) =
(
−σ2

n

)2

+ 2(n− 1)σ4

n2 = (2n− 1)σ4

n2

Finally, we can compare the two MSE:

MSE(σ̂2)−MSE(S2) =
[(2n− 1)

n2 − 2
n− 1

]
· σ4 = 1− 3n

n2(n− 1)
· σ4 < 0

This says, the MLE (or MME) σ̂2 has lower MSE than the unbiased estimator S2, thus
being more efficient. By trading off the bias and variance, we achieve an improvement
of the MSE.

2.2.5 Introduction to Bootstrap Methods

We have studied the evaluation of point estimators, including measures like bias, variance, and
the standard error of estimators for some common distributions. For example, the standard error
of the sample mean for n i.i.d. normal data is easily calculated as se(X̄) = σ/

√
n. However, in

many practical scenarios:

• No closed-form solutions exist: For example, the standard error of the sample median
has no simple formula.

• The underlying population distribution is unknown: Traditional methods often
rely on assumptions about the distribution, which may not hold in real-world scenarios.

The bootstrap method provides a powerful and flexible alternative for addressing these chal-
lenges. The key idea is to approximate the sampling distribution of an estimator θ̂ by resam-
pling from the observed data, treating it as representative of the population. In practice, we
are often limited to a single sample of data, but resampling allows us to artificially generate
multiple datasets from the original sample. By calculating θ̂ for each resampled dataset, we can
approximate the sampling distribution of θ̂ as if repeated random samples had been drawn from
the population.

Let X = {X1, · · · , Xn} represent the observed data, and let θ̂ denote an estimator of interest
(e.g., sample mean, median, or variance). Two primary types of bootstrapping are commonly
used:

• Non-parametric bootstrap: The non-parametric bootstrap involves directly resam-
pling the observed data with replacement, making no assumptions about the population
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distribution. This method is particularly useful when we have no prior knowledge of the
underlying distribution or when the distribution is complex and difficult to model para-
metrically.
Procedure:

1. Generate a bootstrap sample X∗ = {X∗
1 , · · · , X∗

n} by sampling n observations from
X.

2. Compute the estimator θ̂∗ for each bootstrap sample.

3. Repeat this process B times to obtain {θ̂∗
1, · · · , θ̂∗

n}, where B is often chosen to be a
large constant, for example, B = 1, 000.

To understand why this works, consider the empirical distribution function (EDF) of
the observed data, Fn(x), defined as:

Fn(x) = 1
n

n∑
i=1

1(Xi < x) (2.2.11)

The non-parametric bootstrap can be thought of as sampling directly from Fn(x). It turns
out that Fn(x) is a good estimator of the true population CDF F (x). Technically speaking,
this approximation is guaranteed by the Glivenko-Cantelli theorem, which states that the
EDF converges uniformly to the true distribution function almost surely. We omit the
detail here.

• Parametric bootstrap: This method assumes that the population follows a specific
parametric distribution Fθ(x) such as normal or Poisson. This requires additional distri-
butional information about F (x) other than that contained in the observations.
Procedure:

1. Fit the parametric model Fθ to the observed data X and estimating its parameter θ
(using methods such as MME or MLE).

2. Generate a bootstrap sample X∗ by simulating n observations from the fitted model
Fθ̂.

3. Compute the estimator θ̂∗ for each bootstrap sample.

4. Same as the non-parametric bootstrap, repeat this process B times to obtain
{θ̂∗

1, · · · , θ̂∗
B}.

Once the empirical distribution of the estimator θ̂ is obtained, it can be used for inference. The
sample mean and standard deviation and of the bootstrap estimates provides an approximation
of the mean and standard error, respectively:

E[θ̂] ≈ θ̄∗ = 1
B

B∑
i=1

θ̂∗
i (2.2.12)

se(θ̂) ≈

√√√√ 1
B − 1

B∑
i=1

(θ̂∗
i − θ̄∗)2 (2.2.13)

The bootstrap method can also be used to construct confidence intervals, particularly in sit-
uations where classical approaches are not applicable. Traditional methods for constructing
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confidence intervals often rely on strong distributional assumptions, such as normality. In ad-
dition, classical methods may perform poorly when the sample size is small, as the theoretical
properties of many estimators rely on asymptotic approximations such as the Central Limit
Theorem. The bootstrap offers a flexible alternative by leveraging the empirical distribution
obtained through resampling to approximate the sampling variability of the estimator directly.

One commonly used bootstrap approach for confidence interval construction is the percentile
method. This method defines a 1− α confidence interval using the (α/2)-th and (1− α/2)-th
percentiles of the bootstrap estimates. Intuitively, these percentiles represent the range within
which the parameter of interest is most likely to lie, based on the variability observed in the
bootstrap samples. Detailed discussions on confidence interval construction, including practical
examples and comparisons of methods, will follow in later sections.

2.2.6 Theoretical Properties of Maximum Likelihood Estimators

Maximum likelihood estimation is perhaps the most commonly used point estimating method
in various scenarios. In this subsection, we will briefly discuss some of the nice properties of
MLE. Most of the results require rigorous mathematical arguments to prove in full, so we will
focus on the intuition and implications.

As usual, suppose we have a parameter of interest θ, and use θ̂ to denote its MLE. Under some
technical conditionsvi, the MLE θ̂ has the following properties:

1. The MLE is consistent:
θ̂

p→ θ

Here the notation p→ means “converges in probability”. The precise definition of conver-
gence in probabilityvii is beyond the scope of the CS1 syllabus. Intuitively speaking, it
simply says that the MLE θ̂ will be very close to the true parameter value θ as n→∞.

2. The MLE is invariant:
If θ̂ is the MLE of θ, then g(θ̂) is the MLE of g(θ).

This property is particularly useful when we want to estimate some derived quanti-
ties, rather than simply the parameter itself. Consider the example of X ∼ Bin(n, p),
here we imagine X as the number of wins in n games, where p is the winning proba-
bility for each single game. Suppose we want to use MLE to estimate the probability
P(Win three times in three games) = p3. Since we know the MLE of p is p̂ = X/n. Then,
the MLE of p3 can be immediately calculated as p̂3 = X3/n3.

3. The MLE is asymptotically normal:

θ̂
a∼ N (θ, CRLB)

The asymptotic variance “CRLB” is called the Cramér-Rao Lower Bound. This is a
lower bound on the variance that any unbiased estimators can attain.
In general, since an estimator is a function (likely to be non-linear) of the data, its distri-
bution can be very challenging to determine. The asymptotic normality guarantees that

viWe will not worry about the precise technical conditions here. Interested reader can refer to advanced
probability theory or real analysis books. The only condition we need to keep in mind is that the range of the
distribution should not involve the parameters. One such distribution is the uniform distribution U(0, θ).

viiFor interested readers, a sequence of random variables {Xn} converges to a random variable X in probability
if for all ε > 0, P(|Xn − X| > ε) n→∞−→ 0. Note that the random variable X can also be a constant, like θ in the
definition of consistency.
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any MLE (again, under some technical conditions) will have a normal distribution as the
sample size n→∞.

4. The MLE is asymptotically efficient or asymptotically optimal:
This is a direct consequence of the consistency and asymptotic normality described above.
An estimator is called asymptotically efficient or asymptotically optimal if it is asymptot-
ically unbiased, consistent, and has the limiting variance equal to the CRLB.
This property is more like a concluding result. Roughly speaking, it says that among
all well-behaved estimators (asymptotically unbiased and consistent), the MLE has the
smallest possible variance.

We now discuss the CRLB in more detail. Say we only care about the unbiased estimators.
In this case, minimising the MSE is equivalent to minimising the variance. The CRLB exactly
represents the “best performance” that an estimator can achieve. More precisely, the result can
described as follows:

Theorem 2.2.2. If θ̂ is an unbiased estimator of θ, then

Var(θ̂) ≥ CRLB. (2.2.14)

Until now, we have not discussed how to calculate the CRLB exactly. In most cases, the CRLB
can be found analytically, as stated below:

Definition 2.2.6 (Cramér-Rao Lower Bound). Let X = (X1, · · · , Xn) be i.i.d. samples from
the distribution with density f(x|θ), where θ is the parameter of interest. Also, use ℓ(θ) =∑n

i=1 log f(xi|θ) to denote the log-likelihood function. Then, the CRLB is defined as:

CRLB = 1
I(θ)

(2.2.15)

The denominator I(θ) is called the Fisher information, defined by the following equivalent
ways (under some regularity conditions):

I(θ) = E[(ℓ′(θ))2] = nE
[(

∂

∂θ
log f(X|θ)

)2
]

(2.2.16)

or

I(θ) = −E[ℓ′′(θ)] = −nE
[

∂2

∂θ2 log f(X|θ)
]

, (2.2.17)

where the expectation E[·] is respect to the sample X.

The proof of Theorem 2.2.2 and the equivalence between multiple expressions of I(θ) is beyond
the scope of the exam. Here, we provide some intuition of the definition of CRLB and the Fisher
information.

• Fisher information: Recall that when finding the MLE, we need to solve ℓ′(θ) = 0. If the
data contain a lot of information, we should expect that the log-likelihood function ℓ(θ)
concentrates on the true value θ, so that we can locate the MLE with high certainty. This
“concentration” implies that |ℓ′(θ)| should be large for most of the values other than the
true value θ (averaged over all possible samples X), which means the Fisher information
I(θ) = E[(ℓ′(θ))2] is large in this case.
The intuition is similar for the second expression. Since more information means the
“concentration” of ℓ(θ) around θ, it implies that ℓ(θ) has a spike. This further implies
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that the curvature of ℓ(θ), which is ℓ′′(θ), should be largely negative (ℓ′(θ) decreases
quickly). Therefore, the Fisher information I(θ) = −E[ℓ′′(θ)] is (positively) large in this
case.

• CRLB: When the Fisher information I(θ) is large, we are more certain about the true
value of θ, and thus the variance of the estimator is smaller. This is consistent with the
expression of the CRLB, equal to 1/I(θ).

The following two examples will help demonstrate the calculation of the CRLB and the asymp-
totic distribution of MLEs.

Example 2.2.12 (Bernoulli & Binomial CRLB).
 

 

Suppose X1, · · · , Xn
iid∼ Bernoulli(p).

(a) Derive the CRLB for unbiased estimators of p.

(b) Does the MLE p̂ = X̄ attains the CRLB? Comment on the result.

Solution.

(a) f(X|p) = pX(1− p)1−X

=⇒ log f(X|p) = X log p + (1−X) log(1− p)

=⇒ ∂

∂p
log f(X|p) = X

p
− 1−X

1− p
= X − p

p(1− p)

=⇒ I(p) = nE
[(

∂

∂p
log f(X|p)

)2
]

= n

p2(1− p)2 · E[X − p]2︸ ︷︷ ︸
=Var(X)=p(1−p)

= n

p(1− p)

=⇒ CRLB = 1
I(p)

= p(1− p)
n

Note that the Fisher information can also be calculated using the second-order deriva-
tive:

∂2

∂p2 log f(X|p) = −X

p2 −
1−X

(1− p)2 = −p2 + (1− 2p)X
p2(1− p2)

=⇒ I(p) = −nE
[

∂2

∂p2 log f(X|p)
]

= n · p2 + (1− 2p)p
p2(1− p)2 = n

p(1− p)

(b) Since
Var(p̂) = Var(X̄) = p(1− p)/n,

it attains the CRLB. It is worth noting that X̄ attains the CRLB exactly, not asymp-
totically here.

Example 2.2.13 (Exponential CRLB).
 

 

Suppose X1, · · · , Xn
iid∼ Exp(λ).

(a) Derive the Fisher information I(λ) contained in X1, · · · , Xn.

(b) Write down the asymptotic distribution of the MLE λ̂ = 1/X̄.

(c) Assume that we observed X̄ = 5 and n = 10. Estimate the standard error of λ̂.
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Solution.

(a) f(X|λ) = λe−λX

=⇒ log f(X|λ) = log λ− λX.

=⇒ ∂

∂λ
log f(X|λ) = 1

λ
−X.

=⇒ I(λ) = nE
[(

∂

∂λ
log f(X|λ)

)2
]

= n · E
[
X − 1

λ

]2

︸ ︷︷ ︸
=Var(X)= 1

λ2

= n

λ2 .

Similarly, we can also find the Fisher information through the second-order derivative:

∂2

∂λ2 log f(X|λ) = − 1
λ2

=⇒ I(λ) = −nE
[

∂2

∂λ2 log f(X|λ)
]

= n

λ2 .

Notice that in this example, the second-order derivative does not involve the random
variable X, so we can remove the expectation operation here.

(b) We first calculate the CRLB:

CRLB = 1
I(λ)

= λ2

n
.

The asymptotic distribution of λ̂ = 1/X̄ is then

λ̂
a∼ N (λ, CRLB) = N

(
λ,

λ2

n

)
.

(c) From (b), we know that

se(p̂) ≈
√

Var(λ̂) = λ√
n

.

Substitute λ by the MLE λ̂ = 1/X̄ = 1/5, we have the estimated standard error equal
to

ŝe(λ̂) = λ̂√
n

= 1/5√
10
≈ 0.063.

Note that, we use two different approximations in the calculations: 1) Use the CRLB
to estimate Var(λ̂); 2) Use the MLE λ̂ to estimate λ in the standard error.

Exercises

Exercise 2.2.1.
 

 

Let X1, · · · , Xn be random samples from the following probability
density function:

f(x) = 2(θ − x)
θ2 , 0 < x < θ,

where θ > 0. Find the method of moment estimator of θ.
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Solution. We first find the mean

E[X] =
∫ θ

0

2x(θ − x)
θ2 dx = 1

θ2

(
θx2 − 2x3

3

) ∣∣∣θ
0

= θ

3
.

By matching the sample mean and theoretical mean, we have:

X̄ = θ

3
=⇒ θ̂ = 3X̄.

Exercise 2.2.2.
 

 

Let X1, · · · , Xn be random samples from the following probability
density function:

f(x) = 1
2θ3 x2e−x/θ, x > 0, θ > 0.

Find the maximum likelihood estimator of θ.

Solution. The likelihood function is

L(θ) =
n∏

i=1

1
2θ3 X2

i e−Xi/θ,

and the log-likelihood function is

ℓ(θ) = −n log 2− 3n log θ − 1
θ

n∑
i=1

Xi + 2
n∑

i=1
log Xi.

Setting the first-order derivative to 0:

ℓ′(θ) = −3n

θ
+ 1

θ2

n∑
i=1

Xi = 0

=⇒ θ̂ = 1
3n

n∑
i=1

Xi = X̄

3
.

Exercise 2.2.3.
 

 

Consider a random sample of n observations on X having the following
PMF:

x 0 1 2

p(x) 1− θ θ/2 θ/2

(a) Find an unbiased estimators T1 for θ based on the sample mean X̄.

(b) Find an unbiased estimators T2 for θ based on the sample mean Y = freq(0) =∑n
i=1 1(Xi = 0) (the frequency of x = 0).

(c) Compare the two estimators above in terms of the mean square error (MSE).

Solution.
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(a) We can first find that

E[X] = 1 · θ

2
+ 2 · θ

2
= 3θ

2
.

Therefore, E[X̄] = E[X] = 3θ/2, a desirable unbiased estimator is

T1 = 2X̄

3
.

(b) Note that Y ∼ Bin(n, 1− θ), which means E[Y ] = n(1− θ) and E[Y/n] = 1− θ. Thus,
a desirable unbiased estimator is

T2 = 1− Y

n
.

(c) Since both estimators T1 and T2 are unbiased, the MSE equals the variance of each
estimator.
For T1, we first calculate:

Var(X) = 5θ

2
−
(3θ

2

)2
= 5θ

2
− 9θ2

4
.

Therefore,

Var(T1) = Var
(

2X̄

3

)
= 4

9
· Var(X)

n
= 10θ − 9θ2

9n
.

For T2, as Y ∼ Bin(n, 1− θ), we have Var(Y ) = θ(1− θ)/n. Therefore,

Var(T2) = Var(Y )
n2 = θ(1− θ)

n
.

Noticing that

Var(T1) = θ(1− θ)
n

+ θ

9n
>

θ(1− θ)
n

= Var(T2),

we can conclude that MSE(T1) > MSE(T2) and T2 is a better estimator.

Exercise 2.2.4.
 

 

If X̄1 and X̄2 are the sample means of independent random samples of
sizes n1 and n2 from a normal population with the mean µ and the variance σ2.

(a) Show that the estimator T = wX̄1 + (1− w)X̄2 is an unbiased estimator of µ.

(b) Find the value of w so that the variance of T is minimized, and calculate the minimized
variance.

Solution.

(a) Since we have E[X̄1] = E[X̄2] = µ, therefore,
E[T ] = E[wX̄1 + (1− w)X̄2] = wµ + (1− w)µ = µ,

so T is unbiased.

(b) First,
Var(T ) = w2Var(X̄1) + (1− w)2Var(X̄2) + 2w(1− w)Cov(X̄1, X̄2)︸ ︷︷ ︸

=0 by independence
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= w2σ2

n1
+ (1− w)2σ2

n2

= σ2

n1n2

[
(n1 + n2)w2 − 2n1σ2w + n1σ2

]
.

This is a quadratic function and its value is minimized at

w = n1
n1 + n2

,

with the minimized variance being

min
w

Var(T ) = σ2

n1 + n2
.

Exercise 2.2.5.
 

 

Let X1, · · · , Xn be random samples from the following probability
density function:

f(x) = x

θ2 e−x/θ, x > 0, θ > 0.

(a) Determine the maximum likelihood estimator of θ.

(b) Find the Cramér-Rao Lower Bound for unbiased estimators of θ. Also determine the
asymptotic distribution of the MLE. Comment on your findings.

(c) Suppose that the sample size n = 25 and the sample mean is X̄ = 12. Estimate the
standard error of the MLE.

Solution.

(a)

L(θ) =
n∏

i=1

x

θ2 e−x/θ,

and the log-likelihood function is

ℓ(θ) = −2n log θ − 1
θ

n∑
i=1

Xi + constant.

The first-order derivative is :

ℓ′(θ) = −2n

θ
+ 1

θ2

n∑
i=1

Xi.

Setting the first-order derivative to 0:

ℓ′(θ) = −2n

θ
+ 1

θ2

n∑
i=1

Xi = 0

=⇒ θ̂ = X̄

2
.
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(b) We find the second-order derivative of the log-likelihood function:

ℓ′′(θ) = 2n

θ2 −
2nX̄

θ3 .

Therefore, the Fisher information is

I(θ) = −E
[
ℓ′′(θ)

]
= −2n

θ2 + 2n · 2θ

θ3 = 2n

θ2 .

This suggests that the Cramér-Rao Lower Bound is

CRLB = 1
I(θ)

= θ2

2n
.

The asymptotic distribution of θ̂ is

θ̂
a∼ N (θ, CRLB) = N

(
θ,

θ2

2n

)
.

(c) Substituting the numbers, we get the MLE θ̂ = x̄/2 = 6, and the standard error of θ̂
is

se(θ̂) ≈
√

Var(θ̂) = θ̂√
2n

= 6√
2 · 25

= 0.846.

Exercise 2.2.6.
 

 

(R Programming)

An actuary is analysing the number of insurance claims reported by 8 small businesses in a
given year. The observed claim counts are shown as follows:

5, 8, 6, 9, 7, 2, 4, 3.

The actuary assumes that the number of claims follows a Poisson distribution with an
unknown mean θ.

(a) Write R code to determine the maximum likelihood estimate (MLE) of θ.

(b) Write R code to estimate the standard error of the MLE.

(c) Now, removing the Poisson assumption, estimate the standard error of the sample
mean using bootstrap resampling (1000 times). Use a random seed of 2025 before
starting the bootstrap resampling.

Solution.

(a) The MLE of a Poisson mean θ is simply the sample mean.
claim.counts <- c(5, 8, 6, 9, 7, 2, 4, 3)
theta.mle <- mean(claim.counts)
theta.mle

## [1] 5.5
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(b) se.mle <- sqrt(theta.mle / 8)
se.mle

## [1] 0.8291562

(c) set.seed(2025)
B <- 1000
bootstrap.means <- numeric(B)
for (i in 1:B) {
sample.data <- sample(claim.counts, size = 8, replace = TRUE)
bootstrap.means[i] <- mean(sample.data) }
se.bootstrap <- sd(bootstrap.means)
se.bootstrap

## [1] 0.8343267

2.3 Interval Estimation

2.3.1 Introduction to Confidence Intervals

2.3.1.1 Motivation

Point estimators are never right, since they are derived from finite samples. Suppose two analysts
both want to estimate the average height µ of a group of people assuming that the height follows
a normal distribution N (µ, σ2):

• Analyst A: µ̂ = 170 with sample size n = 10, 000.

• Analyst B: µ̂ = 165 with sample size n = 100.

Intuitively, the estimate obtained by Analyst A is more trustworthy given the significantly larger
sample size but even this argument is only qualitative. Therefore, what would be desired is an
inference statement like this:

“I’m 95% confident that the parameter µ is between 165 and 168.”

This can be obtained from the so-called interval estimates, which could not only contain the
information of point estimates but also quantify uncertainty of the estimates. A confidence
interval is one of the most common interval estimate constructed such that the corresponding
interval estimator has a pre-specified probability, known as the confidence level, of containing
the true value of the estimated parameter.

2.3.1.2 Definition

Now, we define a confidence interval mathematically.

Definition 2.3.1 (Confidence Intervals). Let X be a random sample from a probability dis-
tribution with parameter θviii. Then, a 1− α confidence interval (Lθ(X), Uθ(X)) is a random

viiiIn general, there can be multiple parameters of interest θ. In this case, a confidence interval is called a
confidence set. In CS1, we only study confidence intervals for a single parameter.
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