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Survival Models and Their Estimation is a general textbook describing the 
properties and characteristics of survival models, and statistical procedures 
for estimating such models from sample data. Although it is written primarily 
for actuaries, it is also intended to be of interest to a broader mathematical 
and statistical audience. Academically, the text is aimed at the fourth year 
undergraduate or the first year graduate level.

Actuaries and other applied mathematicians work with models which 
predict the survival pattern of humans or other entities (animate or inani­
mate), and frequently use these models as the basis for calculations of con­
siderable financial importance. Specifically, actuaries use such models to cal­
culate the financial values associated with individual life insurance policies, 
pension plans, and income loss coverages. Demographers and other social 
scientists use survival models for making predictive statements about the 
future make-up of a population to which the model is deemed to apply.

This text is not primarily concerned with the uses of survival models, 
but rather with the question of how such models are established. This exer­
cise is sometimes referred to as survival model development or survival 
model construction; in this text, however, we prefer the more descriptive 
phrase survival model estimation.

It cannot be noted too strongly that the “real” survival distribution 
(or survival probabilities) which apply to a group of persons is unknown, and 
probably will forever be so. What we, therefore, attempt to do is estimate 
that distribution, based on the data of a sample and a chosen estimation pro­
cedure. It is vitally important that this be clearly understood. Since the name 
of the game is estimation, there are no “right” answers. There are only sound 
(or unsound) procedures.

Because the result of our exercise is an estimate of the theoretical, 
underlying, operative survival distribution, based on the particular experi­
ence of a sample, we recognize that the estimate is a realization of a random 
variable, called an estimator. In turn, this random variable has properties 
such as expected value and variance, and these properties tell us something 
about the quality of the estimator. Note that we do not judge the “accuracy” 
of the resulting estimate, but rather the quality (or validity) of the procedure 
which produced the estimate. Properties of estimator random variables are 
defined in Appendix A. Readers who are not entirely familiar with these
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properties may wish to review Appendix A before studying the specific esti­
mators developed in the text.

Frequently the estimated survival model produced directly from a 
study is not entirely suitable for practical use, and is, therefore, systemati­
cally revised before such use. The process of revising the initial estimates 
into revised estimates is called graduation. This step in the development of 
a useable estimated survival model is the topic of a companion text to this 
one entitled Graduation: The Revision o f Estimates.

Survival Models and Their Estimation is said to be a general text in 
that it treats survival model estimation from the viewpoint of several differ­
ent practitioners, including the actuary, the demographer, and the biostatisti­
cian, without attempting to be an exhaustive treatment of any one of these 
traditions.

A more thorough treatment of the actuarial tradition, from a different 
perspective, can be found in texts by Gershenson [32], Benjamin and Pollard 
[11], and Batten [8]; demographic approaches are the main theme of the 
works by Keyfitz and Beekman [46], Spiegelman [71], and Chiang [19]; the 
medical, or biostatistical, tradition is more deeply pursued by Elandt-Johnson 
and Johnson [25]. Additional texts, which deal with the statistical analysis of 
survival data at the graduate level, include those by Lawless [50], Lee [51], 
Miller [56], and Kalbfleisch and Prentice [42].

How is an initial estimated survival model determined from sample 
data? There are many approaches to this. A survival model estimation prob­
lem will generally have three basic components: (1) the form and nature of 
the sample data (which might also be called the study design); (2) the
chosen estimation procedure; and (3) any simplifying assumptions made 
along the way. All of these concepts will be further developed in this text. 
The traditional actuarial approach, for example, is characterized by a cross- 
sectional study design using the transactional data of an insurance company 
or pension fund operation, a method-of-moments estimation procedure, and 
the Balducci distribution assumption. In this text we will consider, as well, 
other study designs, primarily those encountered by the clinical statistician or 
the reliability engineer. In addition, we will consider other estimation proce­
dures, especially the maximum likelihood and product-limit methods. Final­
ly, we will consider other simplifying assumptions, such as the uniform and 
exponential distributions.

The text presumes a basic familiarity with probability and statistics, 
including the topics of estimation and hypothesis testing. The application of 
these ideas specifically to the estimation of survival models is then devel­
oped throughout the text. An effort has been made to keep the mathematics

xii
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and the pedagogy at a level which does not require a prior familiarity with 
the topic. Whenever a choice between mathematical rigor and pedagogic 
effectiveness appeared to be necessary, we opted for the latter. As a result, 
the level of mathematical rigor in the text may be somewhat less than that 
desired by the precise mathematician, but the increased clarity which results 
from sacrificing some rigor will hopefully be welcomed by the student reader.

The first edition of this text, published in 1986, included the subject 
matter contained in the first eight chapters of the new edition. Chapters 5 
and 6 have been completely rewritten from the first edition, Chapter 7 has 
been substantially revised, and three entirely new chapters have been added. 
The first edition was adopted by the Society of Actuaries as a reference for 
its examination program in 1987, and many valuable suggestions for im­
provement were contributed by students and educators.

Drafts of the material in both editions of the text were submitted to a 
review team, whose many valuable comments are reflected in the final 
version. The indispensable assistance of this group is hereby gratefully ack­
nowledged.

Warren R. Luckner, FSA, of the Society of Actuaries, coordinated 
the efforts of the review team and made many valuable comments himself.

Stuart A. Klugman, FSA, Ph.D., of the University of Iowa, was 
particularly adept at detecting mathematical errors in the drafts, and much of 
the precision that the text has attained is due to his careful efforts.

Stanley Slater, ASA, of Metropolitan Life Insurance Company, did a 
remarkable job of editing the drafts for improvements in writing style and 
clarity, especially for the benefit of the student reader.

Other members of the review team who made valuable contributions 
to the final text include Robert L. Brown, FSA, and Frank G. Reynolds, 
FSA, both of the University of Waterloo, Cecil J. Nesbitt, FSA, Ph.D., of the 
University of Michigan, Geoffrey Crofts, FSA, of the University of Hartford, 
and Robert Hupf, FSA, of United of Omaha Life Insurance Company.

Much of the research and writing time invested in this project was 
supported by a grant from the Actuarial Education and Research Fund. The 
author would like to express his appreciation to the directors of AERF for 
this support.

Special thanks and appreciation are expressed to Marilyn J. Baleshi- 
ski of ACTEX Publications who did the electronic typesetting for the entire 
text, through what must have appeared to be an endless series of revisions.

Despite the efforts of the review team and the author to attain 
pedagogic clarity and mathematical accuracy, errors and imperfections are

xiii
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undoubtedly still present in the text. For this the author and the publisher 
take full responsibility and sincerely apologize to the reader. We respect­
fully request that you report these errors to the author at ACTEX 
Publications, P.O. Box 974, Winsted, CT 06098.

Winsted, Connecticut Dick London, FSA
June, 1988
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It has been nearly ten years since the publication of the second edition of 
Survival Models and Their Estimation, and its adoption by the Society of 
Actuaries as the principal references for its Course 160 examination. It ap­
pears that the text has proved satisfactory in that role from the point of view 
of exam candidate and examiner alike.

The mathematics of survival models themselves, and how they 
might be estimated from sample data, has been a fairly stable topic, so that a 
revision of the theory presented in the first eight chapters of the textbook 
does not seem to be required at this time. Consequently, the reader familiar 
with the second edition will note various clarifications and improvements in 
presentation in these chapters, but no substantive change in the overall con­
tent. Why, then, is a new edition appearing at this time?

Beginning in 1994, a Society of Actuaries Board Task Force on 
Education has been working toward a new model of actuarial education for 
the twenty-first century. Among many other important principles, the Task 
Force has established that actuarial education in the future should include 
guidance for the application of standard actuarial techniques in disciplines 
beyond the traditional actuarial areas of insurance and pensions. Since 
Survival Models and Their Estimation plays its small part in the actuarial 
education arena, as the reference text for Course 160, it naturally follows 
that a revision of the text, guided by the Task Force principle of broadened 
application, is now appropriate. The result is the appearance of new Chapters 
10, 11, and 12, which present applications of the general theory of survival 
models in such fields as epidemiology, facilities planning, economics, in­
vestments, reliability engineering, and others.

Two other issues have affected certain changes from the prior to the 
current edition of this text as well.

The first is that Chapter 9 in the prior edition, which described the 
demographer’s process of estimating survival models from general popula­
tion data, has been deleted from the text. The material in the prior edition 
was based on out-of-date studies, namely the Canadian census of 1981 and 
the U.S. census of 1980, and is not included in the course of reading for the 
Course 160 exam. Furthermore, the content of that chapter is also included, 
in up-dated form, in the new (third) edition of Robert L. Brown’s Introduc­
tion to the Mathematics o f Demography [16], and interested readers are 
directed to that reference.
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The second important change reflected in the new edition of this 
text is a recognition that the traditional theory and data processing mechan­
ics for large-scale actuarial studies, developed in the pre-computer age, 
should no longer receive the emphasis that it has in the past. Accordingly, 
the description of the theory of the traditional actuarial approach and a 
critique of that theory, as presented in Section 6.4, has been appropriately 
reduced. In addition, Chapter 11 of the prior edition, which dealt with the 
now out-of-date practice of calculating actuarial exposue as a by-product of 
life insurance liability valuation, has been deleted. On the other hand, after 
considerable deliberation it was decided that the prior Chapter 10 should be 
retained as Chapter 9 in the new edition. Although dated in some respects, a 
description of the actual data processing mechanics involved in the actuarial 
technique of estimating survival models from insurance company and pen­
sion fund data, was deemed to still be an important component of actuarial 
education.

The author would like to acknowledge the contributions of several 
colleagues to the new edition of the text.

A review of Chapter 10 was provided by Bruce Leonard Jones, 
FSA, FCIA, Ph.D., of the University of Western Ontario. Frank G. Bensics, 
FSA, Ph.D., of the College of Insurance suggested much of the content of 
Chapter 11, and reviewed the drafts of that chapter as well. An important 
contribution to the development of Chapter 11 was also made by Matthew J. 
Hassett, ASA, Ph.D., of Arizona State University. A similar role for Chapter 
12 was played by Rohan J. Dalpatadu, ASA, Ph.D., of the University of 
Nevada at Las Vegas. Overall guidance for the content of the new edition 
was provided by Robert A. Conover, FSA, the Education Actuary for Course 
160 at the Society of Actuaries.

The text layout design and typesetting was again handled by 
Marilyn J. Baleshiski at ACTEX Publications. The author is very apprecia­
tive of her considerable skills, professionalism, and patience.

We hope that readers familiar with the prior edition of this text will 
agree that the changes reflected in the new edition make a valuable contri­
bution to actuarial education as we enter the twenty-first century. As always, 
corrections and suggestions for improvements are welcome.

Winsted, Connecticut 
April, 1997

Dick London, FSA
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PART I

THE NATURE AND PROPERTIES 
OF SURVIVAL MODELS



The main topic of this text is the statistical estimation of survival models and 
the analysis of those estimated models.

Before we tackle the estimation idea, however, we must first develop a con­
siderable familiarity with survival models themselves, and that is the purpose 
of the first three chapters of the text.

Chapter 1 introduces the general idea of survival models in a conceptual 
manner, and gives an overview of the entire text.

Chapter 2 presents a symbolic analysis of the survival model, and gives 
several examples of distributions that might be used as parametric survival 
models.

Chapter 3 describes the nature and properties of the traditional tabular 
survival model, the life table. A strong effort is made in this chapter to show 
that life tables, assisted by mortality distribution assumptions, have the same 
capabilities as the parametric models of Chapter 2.



THE MATHEMATICS OF SURVIVAL MODELS

2.1 INTRODUCTION

Before we begin our exploration of the topic of estimating a survival model, 
we need to develop a complete understanding of the nature of survival mod­
els themselves.

Since a survival model is a special kind of probability distribution, 
most of the material in this chapter will be familiar to those with a good 
knowledge of probability. Furthermore, the survival model is discussed in 
many standard textbooks on actuarial mathematics. (See, for example, Bow­
ers, et al. [12].)

2.2 THE DISTRIBUTION OF T

2.2.1 The Survival Distribution Function

In Chapter 1 we chose to define and describe a survival model in terms of 
the function S(t), which represents Pr(T>t), where T is the failure time 
random variable. This function of the random variable T is called the Sur­
vival Distribution Function (SDF). We recall that it gives the probability that 
failure (death) will occur after time t, which is the same as the probability 
that the entity, known to exist at time t — 0, will survive to at least time t. 
We also recall that S(0) =  1 and S(oo) =  0.

2.2.2 The Cumulative Distribution Function

The Cumulative Distribution Function (CDF) of T is F{t). The CDF gives 
the probability that the random variable will assume a value less than or 
equal to t. That is,

F{t) =  Pr{T< t). (2.1)

In the special case of our failure time random variable, F(t) gives the 
probability that failure (death) will occur not later than time t. It should be 
clear that
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F{t) =  1 - S ( t \  (2.2)

and that F(0) =  0 and F(oo) =  1.
In most probability textbooks, the CDF, F(t\ is given greater 

emphasis than is the SDF, S(t). But for our special kind of random variable, 
S(t) will receive greater attention.

2.2.3 The Probability Density Function

For the special case of a continuous random variable, the Probability Density 
Function (PDF),/(/), is defined as the derivative of F(t). Thus

m  =

Consequently, it is easy to see that

F(t) =

and

S(t) =

Of course it must be true that

f(y)dy = 1 . (2 .6 )

Although we have given mathematical definitions of/(/), it will be 
useful to describe /(/)  more fully in the context of the failure time random 
variable. Whereas F(t) and S{t) are probabilities which relate to certain time 
intervals, f(t)  relates to a point of time, and is not a probability, per se. We 
prefer to refer to f{t) by its conventional description as “probability density.” 
It is the density of failure at time /, and is an instantaneous measure, as 
opposed to an interval measure.

It is important to recognize that /(/) is the unconditional density of 
failure at time t. By this we mean that it is the density of failure at time t 
given only that the entity existed at / =  0. The significance of this point will 
become clearer in the next subsection.

= o- (2.3)

/ ' f(y)<fy, (2.4)

[
f(y)dy. (2.5)
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2.2.4 The Hazard Rate Function

We have just established that the PDF of r,/( /) , is the unconditional density 
of failure at time t. We now define a conditional density of failure at time t, 
such density to be conditional on survival to time t. This conditional instan­
taneous measure of failure at time t, given survival to time /, will be called 
the hazard rate at time /, or the Hazard Rate Function (HRF) when viewed 
as a function of t. It will be denoted by A(f).

In general, if a conditional measure is multiplied by the probability 
of obtaining the condition, then the corresponding unconditional measure 
will result. Specifically,

(Conditional density of failure at time t, given survival to time t) 
x (Probability of survival to time /)

=  (Unconditional density of failure at time t).

Symbolically this states that

Mathematically, Equations (2.8) and (2.3) define the HRF and the 
PDF of the failure time random variable, and these mathematical definitions 
are, of course, very important. However, it is equally important to have a 
clear understanding of the descriptive meanings of A(t) and /(/). They are 
both instantaneous measures of the density of failure at time /; they differ 
from each other in that A(/) is conditional on survival to time /, whereas /( /)  
is unconditional (z.e., given only existence at time t = 0 ).

In the actuarial context of human survival models, failure means 
death, or mortality, and the hazard rate is normally called the force o f  
mortality. We will discuss the actuarial context further in this chapter and in 
Chapter 3.

Some important mathematical consequences follow directly from 
Equation (2.8). Since/(/) =  — ^  S(t), it follows that

A(0 • S(t) = f(t% (2.7)

or
(2.8)

(2 .9 )
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Integrating, we have

/ '
A(y)dy =  -  In 5(0,

or

5(0 = exp
i

A iy)dy

so that

The Cumulative Hazard Function (CHF) is defined to be

A(t) =  [  A(y)dy = -  In 5(0,
Jo

5(0 = e-yl(/).

(2.10)

(2.11)

(2.12)

(2.13)

2.2.5 The Moments of the Random Variable T

The first moment of a continuous random variable defined on [0, oo) is given 

by
E[T] = [  t - f{ t )d t ,  (2.14)

Jo

if the integral exists, and otherwise the first moment is undefined. Integra­
tion by parts yields the alternative formula

E[T] = [  5(0 dt, (2.15)
Jo

a form which is frequently used to find the first moment of a failure time 
random variable.

The second moment of T is given by

E [T 2] = [  t 2 f(t)dt, (2.16)
Jo

if the integral exists, so the variance of T can be found from

Var(T) = E [ T 2] -  { E [ T ] } 2. (2.17)
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Specific expressions can be developed for the moments of T for specific 
forms of/(/). This will be pursued in the following section.

Another property of the future lifetime random variable that is of 
interest is its median value. We recall that the median of a random variable 
is the value for which there is a 50% chance that T will exceed (and thus also 
not exceed) that value. Mathematically, y  is the median of T if

Pr{T>y)  =  Pr(T<y) = (2.18)

so that SQ/) =  F(y) =

2.2.6 Actuarial Survival Models

Thus far in this section we have considered only the random variable T, and 
have looked at various quantities related to that random variable and the 
interrelationships among those quantities. Exactly the same quantities and 
relationships exist for the actuarial survival model represented by the SDF
S(x), x > 0.

Special symbols are used in the actuarial context for some of the 
concepts defined in this section. The hazard rate, called the force of mortal­
ity, is denoted by px, rather than A(x). Thus

** =  = -  £ lnS^ -  <2-9a> 

It is also customary to denote the first moment of X  by e0. Thus

e0 = E [X] x •f(x)dx . (2.19)

Since e0 is the unconditional expected value of X9 given only alive at jc =  0, 
it is called the complete expectation o f  life at birth.

For the select model S(t;x), recall that / is a value of the random 
variable T, and x is the age at which the person to whom S(t;x) refers was se­
lected. The expected value of T, E[T\x\, gives the expected future lifetime 
(or expectation of life) for a person selected at age x, and is denoted by 
The HRF is denoted by H[x]+t, and is given by

MM+/ -  5 3ft*)
S(t;x) §j In S(t,x). (2.9b)
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We recognize that the moments ofX or T given above are all uncon­
ditional. Conditional moments, and other conditional measures, are defined 
conceptually in Section 2.4, and the standard actuarial notation for them is 
reviewed in Chapter 3.

2.3 EXAMPLES OF PARAMETRIC SURVIVAL MODELS

In this section we explore several non-negative continuous probability distri­
butions which are candidates for serving as survival models. In practice, 
some distributions fit better than others to the empirical evidence of the 
shape of a failure time distribution, so we will comment on each distribution 
we present regarding its suitability as a survival model.

2.3.1 The Uniform Distribution

The uniform distribution is a simple two-parameter distribution, with a con­
stant PDF. The parameters of the distribution are the limits of the interval 
on the real number axis over which it is defined, and its PDF is the recipro­
cal of that interval length. Thus if the random variable is defined over the 
interval [a, b], thenf(t)  =  for a < t < Z>, and f{t) = 0  elsewhere.

For the special case of the future lifetime random variable, a =  0. 
Therefore, b is the length of the interval, as well as the greatest value of t for 
which f(t)  > 0. When the uniform distribution is used as a survival model, 
the Greek uj is frequently used for this parameter, so the distribution is 
defined by

The following properties of the uniform distribution easily follow, and 
should be verified by the reader:

f i t ) 0  < t < uj. (2 .20)

(2.21)

5(/) -  1 -  F{t) (2.22)

(2 .2 3 )
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E[T] = j f  t-f{t)d t = % (2.24)

Var(T) =  E[T2] -  {E[T]}2 = ^  (2.25)

The uniform distribution, as a survival model, is not appropriate over 
a broad range of time, at least as a model for human survival. It is of histor­
ical interest, however, to note that it was the first continuous probability dis­
tribution to be suggested for that purpose, in 1724, by Abraham de Moivre.

The major use of this distribution is over short ranges of time (or 
age). We will explore this use of the uniform distribution quite thoroughly 
in Section 3.5.1.

2.3.2 The Exponential Distribution

This very popular one-parameter distribution is defined by its SDF to be

S(t) =  <rA', t > 0, A > 0. (2.26)

It then follows that the PDF is

Kt) = -  = Xe~x‘, (2.27)

so that the HRF is

A (0 A, (2.28)

a constant. In the actuarial context, where the hazard rate is generally called 
the force of mortality, the exponential distribution is referred to as the con­
stant force distribution.

1 EXAMPLEXn Show that, for the exponential distribution,

and

E[T] = \

_  J _  

“  A2'

(2.29)

Var(T) (2.30)
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1 SOLUTION! E[T] = f ~ t f ( t ) d t  = fo*01 • A e~Xt dt. 
parts produces e~Xt dt, whence E[T ] = — \ e ~ Xt ^
have

Integration by 
= We also

E[T2] 2_
A2'

Then

Var{T) □

The exponential distribution, with its property of a constant hazard 
rate, is frequently used in reliability engineering as a survival model for in­
animate objects such as machine parts (see Chapter 12). Like the uniform 
distribution, however, it is not appropriate as a model for human survival 
over a broad range, but is used extensively over short intervals, such as one 
year, due to its mathematical simplicity. This will be explored in Section
3.5.2.

Since we do not contemplate using the uniform or exponential as a 
model for human survival, we use T, rather than X  for our failure time 
random variable. For the next three distributions, we use X  to suggest that 
they are more useful as models of human survival.

2.3.3 The Gompertz Distribution

This distribution was suggested as a model for human survival by Gompertz 
[33] in 1825. The distribution is usually defined by its hazard rate as

Aft) = Bcx, x > 0, B > 0, c > 1. (2.31)

Then the SDF is given by

S(x) — exp [ - / ’ A (y)dy = exp Inc v C x ) (2.32)

The PDF is given by Aft) • iSfc), and is clearly not a very convenient 
mathematical form. In particular, the mean of the distribution, E[X ], is not 
easily found.
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2.3.4 The Makeham Distribution

In 1860 Makeham [53] modified the Gompertz distribution by taking the 
HRF to be

A(x) = A + B c x, x > 0 ,  B>0, c >  1 , A >  -  B. (2.33)

Makeham was suggesting that part of the hazard at any age is independent of 
the age itself, so a constant was added to the Gompertz hazard rate.

The SDF for this distribution is given by

S(x) = exp
f

{A+Bcy)dy exp (2.34)

Again it is clear that the PDF for this distribution is not mathematically 
tractable, so the calculation of probabilities, moments, or other quantities is 
somewhat difficult.

2.3.5 The Weibull Distribution

This distribution is defined by

A(jc) =  k x n ,x > Q ,  A; > 0, n >  — 1 . 

Its SDF is given by

S(x) = exp |  — J k - y n dy k - x n+r— exp n +  1

(2.35)

(2.36)

2.3.6 Other Distributions

Other probability distributions are very useful as models for other random 
variables, such as the amount o f claim random variable in non-life insur­
ance applications (see, for example, Hogg and Klugman [37]). These distri­
butions, which include the gamma, the chi-square (a special case of the gam­
ma), the normal, the lognormal, the Pareto, and others, are not appropriate 
for the failure time random variable which we are considering in this text.

The chi-square distribution, however, is useful in testing the fit of 
empirical data to a hypothesized parametric distribution (see Chapter 8 ).
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2.3.7 Summary of Parametric Models

We have briefly explored five distributions here: two (uniform and expo­
nential) which are mathematically simple, and three (Gompertz, Makeham 
and Weibull) which are not.

For our actuarial survival model, denoted by S(x), the last three will 
receive further consideration in Chapter 8 . For many illustrations, where we 
wish to avoid mathematical complexity, we will use the uniform or the expo­
nential for illustrative purposes only, not necessarily suggesting that they are 
applicable in practice. The exponential has been assumed to be applicable in 
many situations not involving healthy human lives, and has been widely used 
in those situations.

2.4 CONDITIONAL MEASURES AND TRUNCATED DISTRIBUTIONS

Thus far we have only considered probabilities measured from age x =  0, 
denoting such probabilities by S(x) or F(x). Specifically, such probabilities 
were unconditional, since we knew only that the person was alive at x =  0 . 
Now we consider the case of a person known to be alive at age x > 0, and 
we seek probabilities (and densities) of survival (or failure) measured from 
age x.

2.4.1 Conditional Probabilities and Densities

What is the probability that a person, known to be alive at age x, will still be 
alive n years later (/.e., at age x+w)? We seek

/^(survival to x+w, given survival to x).

If we multiply this conditional probability by the probability of obtaining the 
condition, which is *S(x), we obtain the unconditional probability of survival 
to age x+w, which is ^(x+w). Thus the desired probability, which we denote 
by nPx, is given by

nPx
S(x+n) 

S(x) * (2.37)

The companion conditional probability for death prior to age x+w, 
given alive at x, is given by

nqX
S(x) — S(x-\-n) 

S(x)1 -  nP: (2.38)
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It is important to distinguish npx, a conditional probability, from the 
unconditional probability represented by S(n;x). In each case we seek the 
probability that a person age x will survive to age x+n. When we determine 
this probability in accordance with the model ^(x), it is conditional, it is de­
noted by npx, and it is given by . If the desired probability is deter­
mined from S(t;x), then it is unconditional, it is given directly by S(n;x), and 
it is denoted by nP[x]> to distinguish it from npx.

Similar remarks hold for the companion probability of death prior to 
age x+n. If it is determined from ^(x), it is conditional (on survival to x), it
is given by , and it is denoted by nqx. But if this probability is
determined from S(t;x), then it is unconditional, it is given directly by F(n;x), 
and it is denoted by nq[xy

This is not to suggest that we cannot have conditional probabilities 
in terms of *S(/;x), as shown by the following example.

EXAMPLE 2.2 I Find, in terms of S(/;x), the probability that a person se­
lected at age x, but known to be alive at x + 1 0 , will die prior to age x+ 2 0 . * 1

1 SOLUTION 1 We seek the probability of death prior to age x+20, given 
alive at age x + 1 0 . We denote this probability by iô m+io- It is equal to
1 — /V(Survival to x+20, given survival to x+10) =  1 — ioPm+io- Now if 
the conditional probability io/+t]+io is multiplied by the probability of 
obtaining the condition, which is iS( 1 0 ;x), the result is the unconditional 
probability of survival to x+ 2 0 , namely S(20;x). Thus

i o tfM + 10  =  1 — io/ * m + io  =  1 —
*S'(20;x) 
S( 10;x)* □

Consider next the PDF for death at age y, given alive at age x, for 
y  > x. If this conditional density is multiplied by the probability of obtaining 
the condition, which is ^(x), then the unconditional density, which is f(y), 
results. Thus the conditional density is

m
S(xy (2.39)

We will derive this conditional density more formally in the next subsection.
Finally, consider the conditional HRF (or force of mortality) for 

death at age y, given alive at age x (y > x). Recall that the HRF is itself 
always conditional on survival to the age at which it applies. (There is no
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such thing as an unconditional HRF.) Thus, since y > x and py itself is 
conditional on survival to y 9 then the statement “given survival to x” is 
redundant. Therefore, this “conditonal” HRF to which we allude is clearly 
the same as py itself This intuitive result will be shown more formally in 
the following subsection.

2.4.2 Lower Truncation of the Distribution ofX

When we speak of probabilities (or densities) conditional on survival to age 
x, we are dealing with the distribution of a subset of the sample space of the 
random variable X, namely those values of X  which fall in excess of x. This 
distribution is called the distribution of X  truncated below at x.

Our conditional survival probability npx can now be stated formally 
as

npx = Pr(X > x+n | X  > x) = S(x+« | X  > x). (2.40)

In words, this asks for the probability that the age at death will exceed x+w, 
given that it does exceed x. It is easy to see that this is the same concept as 
“probability of survival to x+tf, given survival to x.” Thus, from Equations 
(2.37) and (2.40) we find that

SOc+w | X > *) =  (2.41)
Similarly,

nqx = Pr(X < x+n \ X  > x)

= Pr(x < X  < x+w \X > x )  = F(x+n \ X  > x). (2.42)

Comparison of Equations (2.38) and (2.42) shows that

F { x + n \ X > x )  = S(X) ~S(x f +n) = F{Xt - F { x ) X)' (2‘43)

since S^x) = 1 — F(x). Note that both (2.41) and (2.43) result from the 
general probability relationship P(A\B) • P(B) =  P(A D B).

Next, the conditional density function for death at agey, given alive 
at age x (y > x), is denoted by f (y  | X  > x). We have

m x > * )  =  = $  T



Conditional Measures and Truncated Distributions 25

since ^  F(x) = 0. Thus we have

f ( y \ x > x )  = (2.39a)

as already established intuitively by (2.39).
Finally, the alleged “conditional HRF at y, given alive at x (y > x),” 

was shown intuitively to be the same as the basic py (or A(y)). This result 
can now be mathematically verified. Denoting this “conditional HRF” by 
A(y | X  > x), we have

\ { y \X > x ) f j y \ X > x )  _  f(y) . S(y) f ( y ) 
S(y \X >  x) “  S(x) * S(x) ~  S(y) = A(y). (2.44)

In summary, the functions S(y | X  > x), F(y | X  > x) and f ( y  | X  > x) 
are the functions for the truncated distribution of X9 truncated below at x. 
The HRF for this truncated distribution, denoted by A(y \ X  > x), is identical 
to the untruncated A(y).

2 4.3 Upper and Lower Truncation of the Distribution of X

A more general view of truncated distributions is to consider the distribution 
of the subset of the sample space of X  which falls between y  and z. Still 
using X  for the age at death random variable, the truncated SDF is given by

S ( x \ y < X < z ) -  P r(X > x \y  < X  < z)

= Pr(x < X  < z \y  < X  < z), (2.45)

for y < x < z. In words, we speak of the probability that death will occur 
after age x, given that it does occur between y  and z. Since it must occur 
prior to z, then we are really talking about death between x and z. If this con­
ditional probability is multiplied by the probability of obtaining the condi­
tion, which is S(y) — S(z), then the unconditional probability for death be­
tween x and z, which is ^(jc) — *S'(z), results. Thus

S(x) -  S(z)
S(y) -  S(z)S(x \ y < X  < z) = (2.46)
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The corresponding truncated CDF is given by

F(x | y < X  < z) = Pr(y < X < x \ y < X < z ) .  

Since F(x \ y  < X  < z) =  1 — S(x \y < X  < z), we have

F ( x \y < X < z ) S(y) -  S(x) _  F(x) -  F(y) 
S(y) — S(z) ~  F(z) — F(y) ’

(2.47)

(2.48)

directly from Equation (2.46).
Next, the doubly-truncated PDF is given by

f ( x \ y < X < z )  = -  £ S( x \ y < X < z ) = -  £

producing
f t x \ y < X < : )  = (2.49)

since -  £  S(x) = f(x), and -  |  S(z) = 0.
Finally, the doubly-truncated HRF is given by

X(x | y  < X  < z) f (x  \ y < X  < z) 
S(x | y  < X  < z) ’

producing

X(x | y  < X  < z) fix) ^  S(x) -  S(z) _  
S(y) — S(z) ■ S (y ) -S (z ) -

f ix )
S (x )-S (zy

Since/(jc) =  A(x) • S(x) in the untruncated distribution, then we have

X(x | y < X  < z) X(x) • S(x)
s(x) -  s(zy (2.50)

Equation (2.50) shows that, whereas truncation only from below did not 
affect the HRF, truncation from above does (since the truncated HRF is a 
function of z). This result is intuitive. Since the HRF at x is conditional on 
survival to x, truncation below x is immaterial. However, truncation above x 
has an effect on the HRF at x, since the time interval remaining for death is 
shortened. It should be clear that as z —> x from above, A(x | y < X  < z) 
becomes infinitely large, since the interval for death approaches zero. This 
result is seen mathematically by taking the limit as z —> x in Equation (2.50).
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2.4.4 Moments of Truncated Distributions

The first moment of the doubly-truncated distribution of X  is given by

E [ X \y < X < z ]  =  f  x • f ( x \ y  < X  < z)dx. (2.51)
J y

Of special interest is the distribution of X  truncated only below at y. Then

/
oc

jc • f ( x \X > y )d x ,  (2.52)

if the expectation exists. Since X  is the age at death of a person known to be 
alive at y, then Equation (2.52) gives the expected age at death for such a 
person. If we subtract y  from this expected age at death, we obtain the expec­
ted future lifetime of such a person. This expected future lifetime is denoted 
by ey, and is called the expectation of life at agey. Formally,

% = E [ X \X > y ] - y . (2.53)

Since Ĵ °° f ( x  | X  > y) dx =  1 , we can write

roc

% =  /  (x-y) ■ f ( x \X >  y)dx 
J y

(2.54a)

= [  t ■ f ( t+ y \X >  y)dt, 
Jo

(2.54b)

and since f ( t+ y \X  > y) is the PDF of (X—y \X > y), then 6 

lifetime” is a good name for ey.
Furthermore, if it exists, then

‘expected future

roc

E [X 2\X > y]  = / x 2 ■ f ( x \X >  y)dx. 
Jy

(2.55)

Then the variance of future lifetime is given by

V ar(X -y \X >  y) = Var(X\X>y) = E[X2 \X >  y] -  ^E [X \X >  y ] ^ .
(2.56)
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2.4.5 The Central Rate

Another type of conditional measure over the interval from age x to age x+\ 
is called the central rate o f death, and is denoted by mx. It is defined as the 
weighted average value of the HRF A(x) over the interval, using, as the 
weight for A(y), the probability of survival to age y. Formally,

f  x+l S(y) ■ A (y)dymx = ————i------------ ,
L  s (y)dy

(2.57)

where the denominator is the sum of the weights for a continuous case 
weighted average.

More generally, nmx is the average hazard, or central rate of death, 
over the interval from jc to jc+ h, and is given by

nmx
i r  S(y) • A(y) dy

Px+nS(y)dy
^(.x+s) • A(x+s) ds 

Jq S(x-{-s) ds (2.58)

the second expression resulting from the simple change of variable y = x+s. 
If we divide both numerator and denominator of (2.58) by S(x), we obtain

n mx / :  ^  ■ ^ + s ) d s
rn

JO  5(x) ds
Jo sPxHx+s ds

J o  s P x d s
(2.59)

since spx is the conditional probability ^  -, and fix+s is the standard actu­
arial symbol for A(jc+ s). The second expression in (2.59) is a common ac­
tuarial form for nmx. We will return to this function in the next chapter, and 
make some use of it in estimating the tabular survival model in Part II of the 
text.

I EXAMPLE T 3 l
plies mx — — Inpx

If X  has an exponential distribution, show that this im-

I SOLUTION 1 If A" is exponential, the HRF is constant, with A (y) = A for 

all v. Then, from Equation (2.57), mx — —Jfi—-- -- -  = A. Furthermore,
Jx s(y)dy

we also have px = y  ̂ = ee-\(x~ = e~X- Thus A = — In/?*, and since 
mx = A, then mx = —Inpx. □



Conditional Measures and Truncated Distributions 29

2.4.6 Use of Conditional Probabilities in Estimation

We have noted that the main business of this text will be the estimation of an 
operative survival model, such estimation to be based on the data of a 
sample.

Suppose we wish to estimate, say, £(1 0 ), the probability of survival 
from t =  0 to t =  10. In many cases the nature of the study (and the data) 
will suggest that we consider only the time interval from t — i to t =  /+ 1 , 
and estimate the conditional probability of survival over that interval. That
is, we will estimate the probability of survival to z+1 , given alive at
/. This conditional probability has been called p h so the estimate of it which 
we obtain will be called pi9 for i = 0 ,1 ,...,9 . We will then obtain our 
estimate of £(10) by multiplying these several p t. Thus we will obtain 
£ (1 0 ) =  p0 • p x ........ p9, or, in general

£(0 -  Po-Px  ........ Pt-1. (2.60)

In many cases it will be natural to first estimate qi9 the conditional proba­
bility of failure (death) in (z, z+1 ], given alive at z; then take pt = 1 — qi9

A  Awhere qt is the estimate of and finally obtain £(/) by multiplying these 
conditional p i estimates. This approach to estimating the survival function 
will be utilized mainly in Chapters 6  and 7.

2.5 TRANSFORMATIONS OF RANDOM VARIABLES

Suppose we have a random variable X, with known probability distribution, 
and we consider a new random variable 7, which is some function of X. 
That is, let

y  = g(*) (2.61)

be a function of x such that the inverse function x = g 1 (v) — h(v) exists. 
We seek the probability distribution of 7

Let y  =  g(x) be a strictly increasing function, as shown in Figure 2.1 
on page 30. Since g(x) is increasing, then if X  is less than or equal to x9 it 
follows that 7 is less than or equal to the unique value of y  which corres­
ponds to the given value of x. Thus if X  < x9 then 7 < g(x). Conversely, if 
7 < y9 then X  < h(y\ and the probabilities of these events are equal. That is,
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Pr{Y< y ) =  Pr{X<h(y)\ (2.62)

or

F(y) = F[h(y)l (2.63)

Equation (2.63) can be confusing since the CDF’s on opposite sides of the 
equation are not the same function. The one on the left is the CDF of the 
random variable Y, whereas the one on the right is for the random variable X. 
To clarify this we write

FY(y) =  Fx [h(y)\ (2.63a)

If ig u r e T H

From (2.63a), which relates the CDF’s of the random variables X  and 
7, we can derive relationships for the SDF’s, PDF’s and HRF’s as well.

Since the SDF is the complement of the CDF, it follows from (2.63a) 
that 1 — Syiy) =  1 — Sx[h(y)], or that

SY(y) = Sx [h(y)l (2.64)

Next, the PDF is the derivative of the CDF, so we differentiate both 
sides of (2.63a) with respect toy, obtaining

/>'(>') = %Fy<y) = $-y Fx [h(y)\ = f x [h(y)} • ^  h(y),

using the chain rule to differentiate Fx[h(y)\ Since h(y) is simply x, we can 
write

f v ( y )  =  f x i m \  • %■ (2.65)



Finally, the HRF is the ratio of the PDF to the SDF. Thus
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A y (y ) .fr(y)
Sy(y)

fx[h(y)) • % 
Sx[h(y)\ Ax[h(y)] ■ f y  (2 .6 6 )

I EXAMPLE 2.41 Suppose X  has an exponential distribution with A =  1.
x1/2. Find the SDF, PDF and HRF of the transformed randomLet y  =  g(x) 

variable Y.

[s o l u t io n ! Note that y — g(x) is strictly increasing, and x — h(y) — y 2. 
Then Fyiy) =  Fx(y2). Since X  is exponential, then Fx(x) = l —e~x, so we 
have Fyiy) =  1 -  e~y\  and S’yO) = e~yl. Next,/y(y) = j-y Fy(y) = 2 y ■ e~y\

-y2
Finally, Ay(y) =  = 2y 6y 2 " =  2y. Alternatively, since we have

Hr\x(x) — A [̂A(y)] = 1, then, from (2.66), Ay(y) is simply ^  =  2y. Note that 
Y has a Weibull distribution with k — 2 and n — 1. □

If y — g(x) is a strictly decreasing function, as shown in Figure 2.2, 
then our reasoning and our results change a bit.

[FIGURE 2.21

Here we can see that if X  is less than x, then Y will be greater than the value 
of y  which corresponds to the given value of x\ or, conversely, if Y > y, then 
X  < h(y). In terms of probabilities, we have

Pr(Y > y) -  Pr(X < h(y)) = Pr(X < h(y)) (2.67)
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