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PREFACE TO THE SECOND EDITIOIN

Survival Models and Their Estimation is a general textbook describing the
properties and characteristics of survival models, and statistical procedures
for estimating such models from sample data. Although it is written primarily
for actuaries, it is also intended to be of interest to a broader mathematical
and statistical audience. Academically, the text is aimed at the fourth year
undergraduate or the first year graduate level.

Actuaries and other applied mathematicians work with models which
predict the survival pattern of humans or other entities (animate or inani-
mate), and frequently use these models as the basis for calculations of con-
siderable financial importance. Specifically, actuaries use such models to cal-
culate the financial values associated with individual life insurance policies,
pension plans, and income loss coverages. Demographers and other social
scientists use survival models for making predictive statements about the
future make-up of a population to which the model is deemed to apply.

This text is not primarily concerned with the uses of survival models,
but rather with the question of how such models are established. This exer-
cise is sometimes referred to as survival model development or survival
model construction; in this text, however, we prefer the more descriptive
phrase survival model estimation.

It cannot be noted too strongly that the “real” survival distribution
(or survival probabilities) which apply to a group of persons is unknown, and
probably will forever be so. What we, therefore, attempt to do is estimate
that distribution, based on the data of a sample and a chosen estimation pro-
cedure. It is vitally important that this be clearly understood. Since the name
of the game is estimation, there are no “right” answers. There are only sound
(or unsound) procedures.

Because the result of our exercise is an estimate of the theoretical,
underlying, operative survival distribution, based on the particular experi-
ence of a sample, we recognize that the estimate is a realization of a random
variable, called an estimator. In turn, this random variable has properties
such as expected value and variance, and these properties tell us something
about the quality of the estimator. Note that we do not judge the “accuracy”
of the resulting estimate, but rather the quality (or validity) of the procedure
which produced the estimate. Properties of estimator random variables are
defined in Appendix A. Readers who are not entirely familiar with these
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properties may wish to review Appendix A before studying the specific esti-
mators developed in the text.

Frequently the estimated survival model produced directly from a
study is not entirely suitable for practical use, and is, therefore, systemati-
cally revised before such use. The process of revising the initial estimates
into revised estimates is called graduation. This step in the development of
a useable estimated survival model is the topic of a companion text to this
one entitled Graduation: The Revision of Estimates.

Survival Models and Their Estimation is said to be a general text in
that it treats survival model estimation from the viewpoint of several differ-
ent practitioners, including the actuary, the demographer, and the biostatisti-
cian, without attempting to be an exhaustive treatment of any one of these
traditions.

A more thorough treatment of the actuarial tradition, from a different
perspective, can be found in texts by Gershenson [32], Benjamin and Pollard
[11], and Batten [8]; demographic approaches are the main theme of the
works by Keyfitz and Beekman [46], Spiegelman [71], and Chiang [19]; the
medical, or biostatistical, tradition is more deeply pursued by Elandt-Johnson
and Johnson [25]. Additional texts, which deal with the statistical analysis of
survival data at the graduate level, include those by Lawless [50], Lee [S1],
Miller [56], and Kalbfleisch and Prentice [42].

How is an initial estimated survival model determined from sample
data? There are many approaches to this. A survival model estimation prob-
lem will generally have three basic components: (1) the form and nature of
the sample data (which might also be called the study design); (2) the
chosen estimation procedure; and (3) any simplifying assumptions made
along the way. All of these concepts will be further developed in this text.
The traditional actuarial approach, for example, is characterized by a cross-
sectional study design using the transactional data of an insurance company
or pension fund operation, a method-of-moments estimation procedure, and
the Balducci distribution assumption. In this text we will consider, as well,
other study designs, primarily those encountered by the clinical statistician or
the reliability engineer. In addition, we will consider other estimation proce-
dures, especially the maximum likelihood and product-limit methods. Final-
ly, we will consider other simplifying assumptions, such as the uniform and
exponential distributions.

The text presumes a basic familiarity with probability and statistics,
including the topics of estimation and hypothesis testing. The application of
these ideas specifically to the estimation of survival models is then devel-
oped throughout the text. An effort has been made to keep the mathematics
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and the pedagogy at a level which does not require a prior familiarity with
the topic. Whenever a choice between mathematical rigor and pedagogic
effectiveness appeared to be necessary, we opted for the latter. As a result,
the level of mathematical rigor in the text may be somewhat less than that
desired by the precise mathematician, but the increased clarity which results
from sacrificing some rigor will hopefully be welcomed by the student reader.

The first edition of this text, published in 1986, included the subject
matter contained in the first eight chapters of the new edition. Chapters 5
and 6 have been completely rewritten from the first edition, Chapter 7 has
been substantially revised, and three entirely new chapters have been added.
The first edition was adopted by the Society of Actuaries as a reference for
its examination program in 1987, and many valuable suggestions for im-
provement were contributed by students and educators.

Drafts of the material in both editions of the text were submitted to a
review team, whose many valuable comments are reflected in the final
version. The indispensable assistance of this group is hereby gratefully ack-
nowledged.

Warren R. Luckner, FSA, of the Society of Actuaries, coordinated
the efforts of the review team and made many valuable comments himself.

Stuart A. Klugman, FSA, Ph.D., of the University of lowa, was
particularly adept at detecting mathematical errors in the drafts, and much of
the precision that the text has attained is due to his careful efforts.

Stanley Slater, ASA, of Metropolitan Life Insurance Company, did a
remarkable job of editing the drafts for improvements in writing style and
clarity, especially for the benefit of the student reader.

Other members of the review team who made valuable contributions
to the final text include Robert .. Brown, FSA, and Frank G. Reynolds,
FSA, both of the University of Waterloo, Cecil J. Nesbitt, FSA, Ph.D., of the
University of Michigan, Geoffrey Crofts, FSA, of the University of Hartford,
and Robert Hupf, FSA, of United of Omaha Life Insurance Company.

Much of the research and writing time invested in this project was
supported by a grant from the Actuarial Education and Research Fund. The
author would like to express his appreciation to the directors of AERF for
this support.

Special thanks and appreciation are expressed to Marilyn J. Baleshi-
ski of ACTEX Publications who did the electronic typesetting for the entire
text, through what must have appeared to be an endless series of revisions.

Despite the efforts of the review team and the author to attain
pedagogic clarity and mathematical accuracy, errors and imperfections are
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undoubtedly still present in the text. For this the author and the publisher
take full responsibility and sincerely apologize to the reader. We respect-
fully request that you report these errors to the author at ACTEX
Publications, P.O. Box 974, Winsted, CT 06098.

Winsted, Connecticut Dick London, FSA
June, 1988
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It has been nearly ten years since the publication of the second edition of
Survival Models and Their Estimation, and its adoption by the Society of
Actuaries as the principal references for its Course 160 examination. It ap-
pears that the text has proved satisfactory in that role from the point of view
of exam candidate and examiner alike.

The mathematics of survival models themselves, and how they
might be estimated from sample data, has been a fairly stable topic, so that a
revision of the theory presented in the first eight chapters of the textbook
does not seem to be required at this time. Consequently, the reader familiar
with the second edition will note various clarifications and improvements in
presentation in these chapters, but no substantive change in the overall con-
tent. Why, then, is a new edition appearing at this time?

Beginning in 1994, a Society of Actuaries Board Task Force on
Education has been working toward a new model of actuarial education for
the twenty-first century. Among many other important principles, the Task
Force has established that actuarial education in the future should include
guidance for the application of standard actuarial techniques in disciplines
beyond the traditional actuarial areas of insurance and pensions. Since
Survival Models and Their Estimation plays its small part in the actuarial
education arena, as the reference text for Course 160, it naturally follows
that a revision of the text, guided by the Task Force principle of broadened
application, is now appropriate. The result is the appearance of new Chapters
10, 11, and 12, which present applications of the general theory of survival
models in such fields as epidemiology, facilities planning, economics, in-
vestments, reliability engineering, and others.

Two other issues have affected certain changes from the prior to the
current edition of this text as well.

The first is that Chapter 9 in the prior edition, which described the
demographer’s process of estimating survival models from general popula-
tion data, has been deleted from the text. The material in the prior edition
was based on out-of-date studies, namely the Canadian census of 1981 and
the U.S. census of 1980, and is not included in the course of reading for the
Course 160 exam. Furthermore, the content of that chapter is also included,
in up-dated form, in the new (third) edition of Robert L. Brown’s Introduc-
tion to the Mathematics of Demography [16], and interested readers are
directed to that reference.
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The second important change reflected in the new edition of this
text is a recognition that the traditional theory and data processing mechan-
ics for large-scale actuarial studies, developed in the pre-computer age,
should no longer receive the emphasis that it has in the past. Accordingly,
the description of the theory of the traditional actuarial approach and a
critique of that theory, as presented in Section 6.4, has been appropriately
reduced. In addition, Chapter 11 of the prior edition, which dealt with the
now out-of-date practice of calculating actuarial exposue as a by-product of
life insurance liability valuation, has been deleted. On the other hand, after
considerable deliberation it was decided that the prior Chapter 10 should be
retained as Chapter 9 in the new edition. Although dated in some respects, a
description of the actual data processing mechanics involved in the actuarial
technique of estimating survival models from insurance company and pen-
sion fund data, was deemed to still be an important component of actuarial
education.

The author would like to acknowledge the contributions of several
colleagues to the new edition of the text.

A review of Chapter 10 was provided by Bruce Leonard Jones,
FSA, FCIA, Ph.D., of the University of Western Ontario. Frank G. Bensics,
FSA, Ph.D., of the College of Insurance suggested much of the content of
Chapter 11, and reviewed the drafts of that chapter as well. An important
contribution to the development of Chapter 11 was also made by Matthew J.
Hassett, ASA, Ph.D., of Arizona State University. A similar role for Chapter
12 was played by Rohan J. Dalpatadu, ASA, Ph.D., of the University of
Nevada at Las Vegas. Overall guidance for the content of the new edition
was provided by Robert A. Conover, FSA, the Education Actuary for Course
160 at the Society of Actuaries.

The text layout design and typesetting was again handled by
Marilyn J. Baleshiski at ACTEX Publications. The author is very apprecia-
tive of her considerable skills, professionalism, and patience.

We hope that readers familiar with the prior edition of this text will
agree that the changes reflected in the new edition make a valuable contri-
bution to actuarial education as we enter the twenty-first century. As always,
corrections and suggestions for improvements are welcome.

Winsted, Connecticut Dick London, FSA
April, 1997
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PART T

THE NATURE AND PROPERTIES
OF SURVIVAL MODELS



The main topic of this text is the statistical estimation of survival models and
the analysis of those estimated models.

Before we tackle the estimation idea, however, we must first develop a con-
siderable familiarity with survival models themselves, and that is the purpose
of the first three chapters of the text.

Chapter | introduces the general idea of survival models in a conceptual
manner, and gives an overview of the entire text.

Chapter 2 presents a symbolic analysis of the survival model, and gives
several examples of distributions that might be used as parametric survival
models.

Chapter 3 describes the nature and properties of the traditional tabular
survival model, the life table. A strong effort is made in this chapter to show
that life tables, assisted by mortality distribution assumptions, have the same
capabilities as the parametric models of Chapter 2.



CHAPTER 2

THE MATHEMATICS OF SURVIVAL MODELS

2.1 INTRODUCTION

Before we begin our exploration of the topic of estimating a survival model,
we need to develop a complete understanding of the nature of survival mod-
els themselves.

Since a survival model is a special kind of probability distribution,
most of the material in this chapter will be familiar to those with a good
knowledge of probability. Furthermore, the survival model is discussed in
many standard textbooks on actuarial mathematics. (See, for example, Bow-
ers, etal. [12].)

2.2 THE DISTRIBUTION OF T
2.2.1 The Survival Distribution Function

In Chapter 1 we chose to define and describe a survival model in terms of
the function S(¢), which represents Pr(7>¢), where T is the failure time
random variable. This function of the random variable T is called the Sur-
vival Distribution Function (SDF). We recall that it gives the probability that
failure (death) will occur gfter time ¢, which is the same as the probability
that the entity, known to exist at time ¢ = 0, will survive to af least time ¢.
We also recall that S(0) = 1 and S(c0) = 0.

2.2.2 The Cumulative Distribution Function

The Cumulative Distribution Function (CDF) of T is F(f). The CDF gives
the probability that the random variable will assume a value less than or
equal to «. That is,

@) = Pr(T<)). 2.1
In the special case of our failure time random variable, F(f) gives the

probability that failure (death) will occur not later than time ¢ It should be
clear that
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F(ry = 1 =8, (2.2)

and that £(0) = 0 and F(oc0) = 1.

In most probability textbooks, the CDF, F(r), is given greater
empbhasis than is the SDF, S(¢). But for our special kind of random variable,
S(¢) will receive greater attention.

2.2.3 The Probability Density Function

For the special case of a continuous random variable, the Probability Density
Function (PDF), f(¢), is defined as the derivative of F(¢). Thus

o = ‘—%F(t) - - C%S(t), t >0 (2.3)

Consequently, it is easy to see that

Aoy = /0 o 2.4)

and

S = / fO)dy. (2.5)

Of course it must be true that

/O fOdy = 1L (2.6)

Although we have given mathematical definitions of f(r), it will be
useful to describe f(¢) more fully in the context of the failure time random
variable. Whereas F(¢) and S(¢) are probabilities which relate to certain time
intervals, f(t) relates to a point of time, and is not a probability, per se. We
prefer to refer to f(#) by its conventional description as “probability density.”
It is the density of failure at time ¢, and is an instantaneous measure, as
opposed to an interval measure.

It is important to recognize that f(¢) is the unconditional density of
failure at time «. By this we mean that it is the density of failure at time ¢
given only that the entity existed at r = 0. The significance of this point will
become clearer in the next subsection.
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2.2.4 The Hazard Rate Function

We have just established that the PDF of 7, f(¢), is the unconditional density
of failure at time . We now define a conditional density of failure at time ¢,
such density to be conditional on survival to time . This conditional instan-
taneous measure of failure at time ¢, given survival to time ¢, will be called
the hazard rate at time ¢, or the Hazard Rate Function (HRF) when viewed
as a function of 7. It will be denoted by A(¥).

In general, if a conditional measure is multiplied by the probability
of obtaining the condition, then the corresponding unconditional measure
will result. Specifically,

(Conditional density of failure at time t, given survival to time f)
x (Probability of survival to time ¢)

= (Unconditional density of failure at time ¢).

Symbolically this states that

A - S = (), (2.7)
or
O = % (2.8)

Mathematically, Equations (2.8) and (2.3) define the HRF and the
PDF of the failure time random variable, and these mathematical definitions
are, of course, very important. However, it is equally important to have a
clear understanding of the descriptive meanings of A(¢) and f(¢). They are
both instantaneous measures of the density of failure at time ¢, they differ
from each other in that A(¢) is conditional on survival to time ¢, whereas ()
is unconditional (i.e., given only existence at time ¢ = 0).

In the actuarial context of human survival models, failure means
death, or mortality, and the hazard rate is normally called the force of
mortality. We will discuss the actuarial context further in this chapter and in
Chapter 3.

Some important mathematical consequences follow directly from

Equation (2.8). Since f(¢) = — 4 S(1), it follows that
ar

—_4dg
D) = "ng(t) = - %lnS(t). (2.9)
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Integrating, we have

H
/ AW dy = — InS@), (2.10)
0
or
!
Sy = exp[— / /\(y)dy}. 2.1
0
The Cumulative Hazard Function (CHF) is defined to be
t
Ay = / A dy = — InS), 2.12)
0
so that
Sty = e, (2.13)

2.2.5 The Moments of the Random Variable T

The first moment of a continuous random variable defined on [0, c0) is given
by

E[T] = /xt-f(t)dt, (2.14)

0

if the integral exists, and otherwise the first moment is undefined. Integra-
tion by parts yields the alternative formula

E[T] = /x S(r)dt, (2.15)
0

a form which is frequently used to find the first moment of a failure time
random variable.
The second moment of T is given by

E[T?] = /xt2~f(t)dt, (2.16)
0

if the integral exists, so the variance of 7 can be found from

Var(T) = E[T*] — {E[T]}* (2.17)
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Specific expressions can be developed for the moments of T for specific
forms of f(#). This will be pursued in the following section.

Another property of the future lifetime random variable that is of
interest is its median value. We recall that the median of a random variable
is the value for which there is a 50% chance that 7 will exceed (and thus also
not exceed) that value. Mathematically, y is the median of T if

PAT>y) = PrT<)) = %, 218)

sothat S() = F() = 1.
2.2.6 Actuarial Survival Models

Thus far in this section we have considered only the random variable 7, and
have looked at various quantities related to that random variable and the
interrelationships among those quantities. Exactly the same quantities and
relationships exist for the actuarial survival model represented by the SDF
S(x),x > 0.

Special symbols are used in the actuarial context for some of the
concepts defined in this section. The hazard rate, called the force of mortal-
ity, is denoted by u,, rather than A(x). Thus

— 4y
b = —Sd&—)(x—) = - L ins@). (2.92)

It is also customary to denote the first moment of X by &. Thus
& = E[X] = / x - f(x)dx. (2.19)
0

Since & is the unconditional expected value of X, given only alive at x = 0,
it is called the complete expectation of life at birth.

For the select model S(¢;x), recall that ¢ is a value of the random
variable 7, and x is the age at which the person to whom S(¢,x) refers was se-
lected. The expected value of T, E[T;x], gives the expected future lifetime
(or expectation of life) for a person selected at age x, and is denoted by 3[x].
The HRF is denoted by i)+, and is given by

R (0)

o = gy = - 4 1n S(t:x). (2.9b)
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We recognize that the moments of X or T given above are all uncon-
ditional. Conditional moments, and other conditional measures, are defined
conceptually in Section 2.4, and the standard actuarial notation for them is
reviewed in Chapter 3.

2.3 EXAMPLES OF PARAMETRIC SURVIVAL MODELS

In this section we explore several non-negative continuous probability distri-
butions which are candidates for serving as survival models. In practice,
some distributions fit better than others to the empirical evidence of the
shape of a failure time distribution, so we will comment on each distribution
we present regarding its suitability as a survival model.

2.3.1 The Uniform Distribution

The uniform distribution is a simple two-parameter distribution, with a con-
stant PDF. The parameters of the distribution are the limits of the interval
on the real number axis over which it is defined, and its PDF is the recipro-
cal of that interval length. Thus if the random variable is defined over the
interval [a, b], then f(¢) = ﬁ fora <t < b, and f(r) = 0 elsewhere.

For the special case of the future lifetime random variable, a = 0.
Therefore, b is the length of the interval, as well as the greatest value of ¢ for
which f(¢#) > 0. When the uniform distribution is used as a survival model,

the Greek w is frequently used for this parameter, so the distribution is
defined by

S = % 0<t<w (2.20)

The following properties of the uniform distribution easily follow, and
should be verified by the reader:

Ry = /0 foydy = 1 221
Sty = 1 - Fo) = / oy = @t (2.22)
Ay = LW - L (2.23)

NO)
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&

E[T] = /wt-f(t)dt = (2.24)

0

Var(T) = E[T?*] — {E[T]}® = o’ (2.25)

12

The uniform distribution, as a survival model, is not appropriate over
a broad range of time, at least as a model for hAuman survival. It is of histor-
ical interest, however, to note that it was the first continuous probability dis-
tribution to be suggested for that purpose, in 1724, by Abraham de Moivre.

The major use of this distribution is over short ranges of time (or
age). We will explore this use of the uniform distribution quite thoroughly
in Section 3.5.1.

2.3.2 The Exponential Distribution
This very popular one-parameter distribution is defined by its SDF to be
S@t) = e M >0, A>0. (2.26)

It then follows that the PDF is

S = =450 = A, 2.27)
so that the HRF is
o) = % = A (2.28)

a constant. In the actuarial context, where the hazard rate is generally called
the force of mortality, the exponential distribution is referred to as the con-
stant force distribution.

I[CEXAMPLE 2.1 || Show that, for the exponential distribution,

E[T] = (2.29)

and
Var(T) = . (2.30)
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SOLUTION | E[T]= [ ¢-f(tydr= [;"t-Xe dt. Integration by

parts produces [, e™*dr, whence E[T] = — %e

. = 3 We also

have

B = [T e var - z/ (e N %/ e = 2.
0 0 0 A

Var(T) = & - {%}2 = O

The exponential distribution, with its property of a constant hazard
rate, is frequently used in reliability engineering as a survival model for in-
animate objects such as machine parts (see Chapter 12). Like the uniform
distribution, however, it is not appropriate as a model for human survival
over a broad range, but is used extensively over short intervals, such as one
year, due to its mathematical simplicity. This will be explored in Section
3.5.2.

Since we do not contemplate using the uniform or exponential as a
model for human survival, we use 7, rather than X for our failure time
random variable. For the next three distributions, we use X to suggest that
they are more useful as models of human survival.

2.3.3 The Gompertz Distribution

This distribution was suggested as a model for human survival by Gompertz
[33]in 1825. The distribution is usually defined by its hazard rate as

Ax) = Bc®, x>0, B>0, ¢> 1. (2.31)

Then the SDF is given by

S(x) = exp [7/0— /\(y)dy} = exp{l—n&c—. (1 —c")} (2.32)

The PDF is given by A(x) - S(x), and is clearly not a very convenient
mathematical form. In particular, the mean of the distribution, E[X], is not
easily found.
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2.3.4 The Makeham Distribution

In 1860 Makeham [53] modified the Gompertz distribution by taking the
HREF to be

Ax) = A+Bc*, x>0, B>0,c>1,4>—B (2.33)
Makeham was suggesting that part of the hazard at any age is independent of

the age itself, so a constant was added to the Gompertz hazard rate.
The SDF for this distribution is given by

Sx) = exp[— /0 x(A—}—ch)dy] - exp[EEE(l—cx)—Ax]. (2.34)

Again it is clear that the PDF for this distribution is not mathematically
tractable, so the calculation of probabilities, moments, or other quantities is
somewhat difficult.
2.3.5 The Weibull Distribution
This distribution is defined by

M) = k- x", x>0, k>0, n> —1. (2.35)

Its SDF is given by

* n k~x"+]
Sx) = exp[—/o k-y dy] = exp[— el b (2.36)

2.3.6 Other Distributions

Other probability distributions are very useful as models for other random
variables, such as the amount of claim random variable in non-life insur-
ance applications (see, for example, Hogg and Klugman [37]). These distri-
butions, which include the gamma, the chi-square (a special case of the gam-
ma), the normal, the lognormal, the Pareto, and others, are not appropriate
for the failure time random variable which we are considering in this text.
The chi-square distribution, however, is useful in testing the fit of
empirical data to a hypothesized parametric distribution (see Chapter 8).
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2.3.7 Summary of Parametric Models

We have briefly explored five distributions here: two (uniform and expo-
nential) which are mathematically simple, and three (Gompertz, Makeham
and Weibull) which are not.

For our actuarial survival model, denoted by S(x), the last three will
receive further consideration in Chapter 8. For many illustrations, where we
wish to avoid mathematical complexity, we will use the uniform or the expo-
nential for illustrative purposes only, not necessarily suggesting that they are
applicable in practice. The exponential has been assumed to be applicable in
many situations not involving healthy human lives, and has been widely used
in those situations.

2.4 CONDITIONAL MEASURES AND TRUNCATED DISTRIBUTIONS

Thus far we have only considered probabilities measured from age x = 0,
denoting such probabilities by S(x) or F(x). Specifically, such probabilities
were unconditional, since we knew only that the person was alive at x = 0.
Now we consider the case of a person known to be alive at age x > 0, and
we seek probabilities (and densities) of survival (or failure) measured from
age x.

2.4.1 Conditional Probabilities and Densities

What is the probability that a person, known to be alive at age x, will still be
alive n years later (i.e., at age x+n)? We seek

Pr(survival to x+n, given survival to x).

If we multiply this conditional probability by the probability of obtaining the
condition, which is S(x), we obtain the unconditional probability of survival
to age x+n, which is S(x+n»). Thus the desired probability, which we denote
by npx, is given by

_ S(x+n)
nPx = Sx) -

(2.37)

The companion conditional probability for death prior to age x+n,
given alive at x, is given by

e = 1= ape = DS, (238)
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It is important to distinguish ,p,, a conditional probability, from the
unconditional probability represented by S(n;x). In each case we seek the
probability that a person age x will survive to age x+n When we determine

this probability in accordance with the model S(x), it is conditional, it is de-

noted by ,p,, and it is given by S%;)i) If the desired probability is deter-

mined from S(#;x), then it is unconditional, it is given directly by S(z;x), and
it is denoted by ,p(y, to distinguish it from ,p,.
Similar remarks hold for the companion probability of death prior to

age x+n. If it is determined from S(x), it is conditional (on survival to x), it

is given by S(Lg(w, and it is denoted by ,q,. But if this probability is

determined from S(#;x), then it is unconditional, it is given directly by F(n;x),
and it is denoted by gy

This is not to suggest that we cannot have conditional probabilities
in terms of S(¢;x), as shown by the following example.

[CEXAMPLE 2.2 ]| Find, in terms of S(#;x), the probability that a person se-
lected at age x, but known to be alive at x410, will die prior to age x+20.

SOLUTION | We seek the probability of death prior to age x+20, given
alive at age x+10. We denote this probability by jog(x+10- It is equal to

1—-Pr(Survival to x4-20, given survival to x+10) = 1—gpp)+10. Now if
the conditional probability 0ppj+10 1s multiplied by the probability of
obtaining the condition, which is S(10;x), the result is the unconditional
probability of survival to x+20, namely S(20;x). Thus

S(20;
10gig+10 = 1 —10Pp+10 = 1 — Sglo;ig' =

Consider next the PDF for death at age y, given alive at age x, for
y > x. If this conditional density is multiplied by the probability of obtaining
the condition, which is S(x), then the unconditional density, which is f(y),
results. Thus the conditional density is

(62)
%A (2.39)

We will derive this conditional density more formally in the next subsection.

Finally, consider the conditional HRF (or force of mortality) for
death at age y, given alive at age x (y > x). Recall that the HRF is itself
always conditional on survival to the age at which it applies. (There is no
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such thing as an unconditional HRF.) Thus, since y > x and p, itself is
conditional on survival to y, then the statement “given survival to x” is
redundant. Therefore, this “conditonal” HRF to which we allude is clearly
the same as p, itself. This intuitive result will be shown more formally in
the following subsection.

2.4.2 Lower Truncation of the Distribution of X

When we speak of probabilities (or densities) conditional on survival to age
x, we are dealing with the distribution of a subset of the sample space of the
random variable X, namely those values of X which fall in excess of x. This
distribution is called the distribution of X truncated below at x.

Our conditional survival probability ,p, can now be stated formally
as

Wx = PriX>x+n|X>x) = Sx+n|X > x). (2.40)

In words, this asks for the probability that the age at death will exceed x+n,
given that it does exceed x. It is easy to see that this is the same concept as

“probability of survival to x+n, given survival to x.” Thus, from Equations
(2.37) and (2.40) we find that

S(x+n)
S(x)

S(x+n|X > x) (2.41)

Similarly,
gy = Pr(X < x+n|X>x)
=Prix < X < x+n|lX>x) = Fx+n|X> x). (2.42)
Comparison of Equations (2.38) and (2.42) shows that

S(x) — S(x+n)  Flx+n)— F(x)
S(x) - 1 —Fkx)

Fx+n|X>x) = (2.43)

since S(x) = 1— F(x). Note that both (2.41) and (2.43) result from the
general probability relationship P(4|B) - P(B) = P(AN B).

Next, the conditional density function for death at age y, given alive
at age x (y > x), is denoted by f(y| X > x). We have

foIxX>x = LFRylX>x) = %—F?)_}{};O - L [%),
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since %F(x) = 0. Thus we have

folx>x = O (2.39)

as already established intuitively by (2.39).

Finally, the alleged “conditional HRF at y, given alive at x (y > x),”
was shown intuitively to be the same as the basic u, (or A(y)). This result
can now be mathematically verified. Denoting this “conditional HRF” by
Ay | X > x), we have

X>x) _ fo . S0y _ ) _
AQ|X > x) = ;S&'X>;‘) - %_Tg) - §—& — ). (2.44)

In summary, the functions S(y | X > x), F(y | X > x) and f(y | X > x)
are the functions for the truncated distribution of X, truncated below at x.
The HREF for this truncated distribution, denoted by A(y | X > x), is identical
to the untruncated A(y).

2.4.3 Upper and Lower Truncation of the Distribution of X

A more general view of truncated distributions is to consider the distribution
of the subset of the sample space of X which falls between y and z. Still
using X for the age at death random variable, the truncated SDF is given by

Sxly<X<z) = PriX>x|y<X<2)

= Prx<X<z|ly< X< 2), (2.45)

for y < x <z In words, we speak of the probability that death will occur
after age x, given that it does occur between y and z. Since it must occur
prior to z, then we are really talking about death between x and z. If this con-
ditional probability is multiplied by the probability of obtaining the condi-
tion, which is S(y) — S(z), then the unconditional probability for death be-
tween x and z, which is S(x) — S(z), results. Thus

Sxly < X<z) = %8‘%:—?8 (2.46)
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The corresponding truncated CDF is given by
Fxly<X<z) = Priy<X<x|ly<X<2) (2.47)
Since Fx|y< X<z) =1 — Sx|y < X<2z), we have

Fxly<x<z = =g = 7910 @)

directly from Equation (2.46).
Next, the doubly-truncated PDF is given by

faly<X<z) = - 4saly<x<s = - &E=5E

producing
- _J®
Jxly<X<z) = NOENEL (2.49)
since — 4 §(x) = f(x),and — £ §(z) =
Finally, the doubly-truncated HRF is given by
Arly<xgs = fEESEsD

producing

Nely< X<z = dO L S@-S) _ fe)

S —Szy SO =S T S&x) - Sey
Since f(x) = A(x) - S(x) in the untruncated distribution, then we have

AX) - S(x)

Ax|ly<X<z) = m

(2.50)

Equation (2.50) shows that, whereas truncation only from below did not
affect the HRF, truncation from above does (since the truncated HRF is a
function of z). This result is intuitive. Since the HRF at x is conditional on
survival to x, truncation below x is immaterial. However, truncation above x
has an effect on the HRF at x, since the time interval remaining for death is
shortened. It should be clear that as z — x from above, A(x|y < X < z)
becomes infinitely large, since the interval for death approaches zero. This
result is seen mathematically by taking the limit as z — x in Equation (2.50).
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2.4.4 Moments of Truncated Distributions

The first moment of the doubly-truncated distribution of X is given by
EX|ly<X<z] = /zx-f(x|y<X§z)dx. (2.51)
¥
Of special interest is the distribution of X truncated only below at y. Then
EX|X>)y] = /ocx-f(x|X>y)dx, (2.52)
y

if the expectation exists. Since X is the age at death of a person known to be
alive at y, then Equation (2.52) gives the expected age at death for such a
person. If we subtract y from this expected age at death, we obtain the expec-
ted future lifetime of such a person. This expected future lifetime is denoted
by %, and is called the expectation of life at age y. Formally,

o]

8 = EX|X>y]—y. (2.53)

Since [ f(x| X > y)dx = 1, we can write

e, = /OC (x—y) - f(x|X > y)dx (2.54a)
y

— /oc t- ft+y| X > y)d, (2.54b)
0

and since f(t+y| X > y) is the PDF of (X—y| X > y), then “expected future
lifetime” is a good name for ¢,.
Furthermore, if it exists, then

E[X*)X>y] = /ocx2 - f(x| X > y)dx. (2.55)
Y

Then the variance of future lifetime is given by

2
Var(X—y | X>y) = Var(X|X>y) = E[X2|X > y] — {E[X|X>y]} _
(2.56)



28 The Mathematics of Survival Models

2.4.5 The Central Rate

Another type of conditional measure over the interval from age x to age x+1
is called the central rate of death, and is denoted by m,. It is defined as the
weighted average value of the HRF A(x) over the interval, using, as the
weight for A(y), the probability of survival to age y. Formally,

180 - M)y dy
fxx+ 1 S()/) dy

where the denominator is the sum of the weights for a continuous case
weighted average.

More generally, ,m, is the average hazard, or central rate of death,
over the interval from x to x+n, and is given by

ny, =—

(2.57)

fxx+n SO - Ay) dy B fo" S(x+s) - A(x+s)ds
[ Sy dy - o SCxt+s)ds

the second expression resulting from the simple change of variable y = x+s.
If we divide both numerator and denominator of (2.58) by S(x), we obtain

nMx

(2.58)

n S(x+s)
I fO S(x) S' A(x+s)ds _ fon sPxbox+s dS (2.59)
nitix n S(x+ ] S .
fO (S(—x)j)ds fo sPx ds

since ;p, is the conditional probability S(Sx(j)s), and p.; 1s the standard actu-

arial symbol for A(x+s). The second expression in (2.59) is a common ac-
tuarial form for ,m,. We will return to this function in the next chapter, and
make some use of it in estimating the tabular survival model in Part II of the
text.

[EXAMPLE 2.3] If X has an exponential distribution, show that this im-
plies m, = — Inp,.

SOLUTION | If X is exponential, the HRF is constant, with A(y) = A for

. A [semay
all y. Then, from Equation (2.57), m, = —f;”' Sovdy A.  Furthermore,
—Ax+1
we also have p, = S(g(j:)]) = ee,-(,\(x)) = ¢* Thus A = —Inp,, and since

my = A, thenm, = —Inp,. O
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2.4.6 Use of Conditional Probabilities in Estimation

We have noted that the main business of this text will be the estimation of an
operative survival model, such estimation to be based on the data of a
sample.

Suppose we wish to estimate, say, S(10), the probability of survival
from ¢t = 0 to t = 10. In many cases the nature of the study (and the data)
will suggest that we consider only the time interval from 1 =i to # = i+1,

and estimate the conditional probability of survival over that interval. That

is, we will estimate ng;)l), the probability of survival to i+1, given alive at

i. This conditional probability has been called p;, so the estimate of it which
we obtain will be called f),., for i = 0,1,...,9. We will then obtain our
estimate of S(10) by multiplying these several p,, Thus we will obtain

§(10) =Py Py - - Do, oOr, in general

A
S@ = Py Dy - Dy (2.60)

In many cases it will be natural to first estimate ¢;, the conditional proba-

bility of failure (death) in (i,i+1], given alive at i; then take p, = 1 —g,,
A

where g, is the estimate of ¢;; and finally obtain S(f) by multiplying these

conditional p, estimates. This approach to estimating the survival function

will be utilized mainly in Chapters 6 and 7.

2.5 TRANSFORMATIONS OF RANDOM VARIABLES

Suppose we have a random variable X, with known probability distribution,
and we consider a new random variable Y, which is some function of X
That is, let

y = g (2.61)

be a function of x such that the inverse function x = g~'(y) = h(y) exists.
We seek the probability distribution of Y.

Let y = g(x) be a strictly increasing function, as shown in Figure 2.1
on page 30. Since g(x) is increasing, then if X is less than or equal to x, it
follows that Y is less than or equal to the unique value of y which corres-
ponds to the given value of x. Thus if X < x, then ¥ < g(x). Conversely, if
Y <y, then X < h(y), and the probabilities of these events are equal. That is,
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PHY <y) = PrX < h(y)), (2.62)

or
oy = FhO)l (2.63)
Equation (2.63) can be confusing since the CDF’s on opposite sides of the
equation are not the same function. The one on the left is the CDF of the

random variable ¥, whereas the one on the right is for the random variable X.
To clarify this we write

Fy(y) = Fx[h(») (2.63a)
y = gx)
y ...........
!
|
|
1
X
FIGURE 2.1

From (2.63a), which relates the CDF’s of the random variables X and
Y, we can derive relationships for the SDF’s, PDF’s and HRF’s as well.

Since the SDF is the complement of the CDF, it follows from (2.63a)
that 1 — Sy(y) = 1 — Sx[A(p)], or that

Sy = Sx[A(»)] (2.64)

Next, the PDF is the derivative of the CDF, so we differentiate both
sides of (2.63a) with respect to y, obtaining

A0) = &R0 = RN = AN § o),

using the chain rule to differentiate Fx[h(y)]. Since A(y) is simply x, we can
write

fro) = fxlh()]- g—; (2.65)
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Finally, the HRF is the ratio of the PDF to the SDF. Thus

[h()] - &

EXAMPLE 2.4| Suppose X has an exponential distribution with A = 1.
Let y = g(x) = x'/2. Find the SDF, PDF and HRF of the transformed random
variable Y.

SOLUTION] Note that y = g(x) is strictly increasing, and x = h(y) = y>.
Then Fy(y) = Fy(y?). Since X is exponential, then Fy(x) = 1—e™*, so we

have Fy(y) = 1 — e, and Sy(y) = e™". Next, fy(y) = LFy(p) =27

2
Finally, Ay(y) = j f YF())’)Z)/) ' fyzy =2y. Alternatively, since we have
€

Ax(x) = Ax[h(y)] = 1, then, from (2.66), Ay(y) is simply % = 2y. Note that
Y has a Weibull distribution with ks = 2 and n = 1. O

If y = g(x) is a strictly decreasing function, as shown in Figure 2.2,
then our reasoning and our results change a bit.

y = g

FIGURE 2.2
Here we can see that if X is less than x, then Y will be greater than the value
of y which corresponds to the given value of x; or, conversely, if ¥ > y, then

X < h(y). Interms of probabilities, we have

Pr(Y>y) = PriX < h(y)) = PHX < h(y)) (2.67)
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